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Mountain-generated inertia-gravity waves (IGWs) affect the dynamics of both the8

atmosphere and the ocean through the mean force they exert as they interact with9

the flow. A key to this interaction is the presence of critical-level singularities or, when10

planetary rotation is taken into account, inertial-level singularities, where the Doppler-11

shifted wave frequency matches the local Coriolis frequency. We examine the role of12

the latter singularities by studying the steady wavepacket generated by a multiscale13

mountain in a rotating linear shear flow at low Rossby number. Using a combination of14

WKB and saddle-point approximations, we provide an explicit description of the form15

of the wavepacket, of the mean forcing it induces, and of the mean-flow response.16

We identify two distinguished regimes of wave propagation: Regime I applies far enough17

from a dominant inertial level for the standard ray-tracing approximation to be valid;18

Regime II applies to a thin region where the wavepacket structure is controlled by the19

inertial-level singularities. The wave–mean-flow interaction is governed by the change20

in Eliassen–Palm (or pseudomomentum) flux. This change is localised in a thin inertial21

layer where the wavepacket takes a limiting form of that found in Regime II. We solve a22

quasi-geostrophic potential-vorticity equation forced by the divergence of the Eliassen–23

Palm flux to compute the wave-induced mean flow. Our results, obtained in an inviscid24

limit, show that the wavepacket reaches a large-but-finite distance downstream of the25

mountain (specifically, a distance of order k
1/2
∗ ∆3/2, where k−1∗ and ∆ measure the wave26

and envelope scales of the mountain) and extends horizontally over a similar scale.27

1. Introduction28

The importance of mountain-generated inertia-gravity waves for the atmospheric cir-29

culation has long been recognised (see Fritts & Alexander 2003, for a review), and their30

parameterisation is now an essential element of weather-forecasting and climate models31

(e.g., Alexander et al. 2010). Their oceanic counterparts, while often neglected, are now32

increasingly thought to play a significant role for the oceanic circulation (e.g. Scott et al.33

2011; Nikurashin & Ferrari 2011, 2013). These waves impact both the atmospheric and34

oceanic circulations through the drag they extert where they dissipate, often through35

their interaction with the large-scale flow at critical levels where the mean flow velocity36

vanishes or, accounting for the background rotation, at inertial levels where their Doppler-37

shifted frequency matches the local Coriolis frequency.38

Our understanding of this form of interaction with the mean flow rests on a number of39

now classical papers (including Eliassen & Palm 1961; Bretherton 1966, 1969a,b; Jones40

1967; Booker & Bretherton 1967) that tackled both the propagation of the waves in a41

shear flow and the drag they exert on the flow. These identified the Eliassen–Palm (EP)42

flux (or pseudomomentum flux) as the key quantity controlling the drag, showed that43
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its conservation in the absence of dissipation leads to non-interaction results (Charney44

& Drazin 1961; Andrews & McIntyre 1976, 1978), and elucidated how critical-level and45

inertial-level singularities disrupt this conservation and result in drag. These results have46

subsequently been applied to a variety of mountain shapes and flows.47

The present paper focusses on the case of a topographic profile with two well-separated48

horizontal scales, with small-scale oscillations modulated over a large envelope scale.49

Topographies of this form are assumed in atmospheric-model parameterisations (Martin50

& Lott 2007) and are natural for the ocean, e.g., in ridge regions. Our aim is to provide51

a detailed description of the wavepacket generated by a relatively weak flow whose52

Rossby number based on the envelope scale is small. The Rossby number based on53

the oscillation scale is however large enough for the waves to be vertically propagating54

(rather than evanescent) from the ground up. The flow considered is back sheared,55

with a zero-velocity, critical level above the ground. In this setup, background rotation56

is crucial in two respects: first, it contributes to the dispersion relation; second, it57

determines the nature of the singularities in the vertical structure of the wave solution.58

Specifically, rotation resolves the degeneracy of the critical level singularity, which is59

independent of wavenumber, into a pair of wavenumber-dependent inertial levels. As a60

result, the singularities associated with the broad wavenumber spectrum of a wavepacket61

are smeared out over a range of altitude – the inertial layer – and the wavepacket solution62

itself is smooth in the limit of vanishing dissipation (Shutts 2001). (An analogous effect63

arises when the orientation of the flow changes with altitude, see Shutts (1995, 2003).)64

We tackle the three essential aspects of the problem by computing (i) the shape of the65

wavepacket, (ii) the associated EP flux, and (iii) the mean-flow change that results from66

the divergence of this EP flux. We take advantage of the assumption of small Rossby67

number and of a related assumption of large Richardson number to carry out the entire68

computation asymptotically, relying on the WKB form of the vertical structure of plane69

waves in the horizontal obtained by Lott et al. (2010, 2012). The analysis identifies two70

distinct altitude ranges corresponding to two distinct asymptotic regimes. In the first,71

valid away from the inertial levels, standard ray tracing applies and the (horizontally72

integrated) EP flux is independent of altitude; in the second, valid in a thin region73

surrounding the inertial layer, the solution is more complicated and captures the finiteness74

of the wavepacket deflection as it approaches a central inertial level. It turns out that75

inertial-level absorption affects only a still thinner region, which defines an inertial layer.76

The mean drag is vertically localised in this layer.77

The asymptotic approach provides answers to basic questions – such as the horizontal78

distance between mountain and region of wave drag, and the extent of this region –79

as scaling laws in terms of key parameters characterising the stratification, shear and80

mountain shape. These scaling relations, which likely apply to more general setups than81

the one we consider, may prove useful for the representation of moutain-wave drag in82

numerical models.83

The structure of this paper is as follows. We formulate the problem in §2 and approx-84

imate the form of the wavepacket in different regimes using a steepest-descent method85

in §3. In §4 we use this approximation to calculate the EP flux and solve a mean quasi-86

geostrophic potential-vorticity equation to obtain the mean-flow response. We summarise87

and discuss our results in §5.88

2. Formulation89

We consider the interaction between a steady topographic wavepacket and a back-90

ground shear flow in an idealized setup shown in Fig. 1. The background flow is chosen91
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Figure 1. Schematic representation of the setup of the problem in the (x, z)-plane. A wavepacket
generated by a two-scale mountain at the ground z = −H propagates vertically in the shear flow
U = (−Λz, 0) and drives a mean-flow in the (hatched) region localised around the dominant
inertial level z = −f/(k∗Λ).

as a unidirectional, uniform backward shear flow U = (−Λz, 0, 0) with Λ = const. > 0.92

The distance between the level of zero background velocity (critical level) and the bottom93

boundary is H. It proves convenient to use a slightly unusual vertical coordinate such94

that z = 0 and z = −H correspond to the critical level and ground, respectively. The95

topographic wavepacket is generated by an idealized multiscale mountain with height96

ht(x, y) = hRe
(

e−(x
2+y2)/(2∆2)eik∗·x

)
=
∆2h

2π
Re

(∫ ∞
−∞

∫ ∞
−∞

e−|k−k∗|
2∆2/2eik·xdkdl

)
, (2.1)

where x = (x, y), k = (k, l), k∗ = (k∗, l∗) is the dominant wavevector, h is the maximum97

height of the mountain, and Re denotes the real part. Here k−1∗ and ∆ control the98

oscillation scale and envelope scale of the moutain so that the parameter k∗∆ � 199

characterizes the separation between these scales.100

The fluid satisfies the f -plane hydrostatic Boussinesq equations101

∂tu + u·∇u + w∂zu + fez×u = −∇φ, (2.2a)

∂zφ = b, (2.2b)

∂tb+ u·∇b+ w∂zb+N2w = 0, (2.2c)

∇·u + ∂zw = 0, (2.2d)

where u = (u, v) is the horizontal velocity, w the vertical velocity, φ a scaled pressure, b102

the buoyancy, f the local Coriolis frequency, ez the unit vertical vector pointing upwards,103

N the Brunt-Väisälä frequency, taken to be a constant, and ∇ = (∂x, ∂y) is the horizontal104

gradient.105

We apply a no-normal flow boundary condition at the lower boundary:106

w = ub ·∇ht at z = −H + ht, (2.3)

where the subscript “b” denotes the value on the boundary.107
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3. Wave solution108

3.1. Preliminaries109

We examine small-amplitude waves governed by the linearization of the primitive110

equations (2.2) about the background flow. This is in geostrophic balance and given111

by112

U0 = −∂yΨ0, V0 = 0, W0 = 0, B0 = f∂zΨ0, Φ0 = fΨ0, where Ψ0 = Λyz.
(3.1)

We assume a small Rossby number based on the envelope scale ∆ of the topography:113

Ro =
Ub

f∆
� 1, (3.2)

where Ub = ΛH. We are interested in propagating mountain waves, in the distinguished114

regime where the Doppler-shifted frequency Ubk∗ is of the same order as the Coriolis115

frequency. This corresponds to the scaling116

k∗∆ = O(Ro−1)� 1, (3.3)

which we assume. The waves are propagating and not evanescent at the bottom boundary117

provided that Ubk∗ > f or, equivalently,118

k∗∆Ro > 1, (3.4)

which we also assume.119

Linearizing (2.2) around the background flow (3.1) leads to the equations120

∂tu1 − Λz∂xu1 + Λw1ex + fez×u1 = −∇φ1, (3.5a)

∂zφ1 = b1, (3.5b)

∂tb1 − Λz∂xb1 + fΛv1 +N2w1 = 0, (3.5c)

∇·u1 + ∂zw1 = 0. (3.5d)

with ex the unit vector in the x-direction, which govern the leading-order wave fields,121

denoted here by the subscript “1”. The amplitude of the waves is determined by the122

linearisation of the boundary condition (2.3),123

w1 = Ub∂xht. (3.6)

This indicates that w1 = O(Ubk∗h). The polarization relation for standard internal waves124

(see also (3.12a) below) can then be used to estimate u1 = O(Nw1/(k∗Ub)) = O(Nh).125

The linearization based on the small-amplitude condition u1 � Ub thus requires that the126

inverse Froude number127

Nh

Ub
= J

h

H
� 1, (3.7)

where J = N/Λ = Ri1/2, with Ri = N2/Λ2 the Richardson number. Based on this small128

parameter, we introduce the convention of using a subscript ‘n’ (n = 1, 2, 3 . . . ) to denote129

the nth-order flow variables such that130

un = O

((
J
h

H

)n
Ub

)
. (3.8)

After applying a Fourier transform, (3.5) can be reduced to the single equation131

1− ζ2

ζ2
ŵζζ −

(
2

ζ3
− 2iν

ζ2

)
ŵζ −

(
(1 + ν2)J2

ζ2
+

2iν

ζ3

)
ŵ = 0, (3.9)
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where ν = l/k. (This is equation (25) in Jones (1967) and equation (4) in Yamanaka &132

Tanaka (1984).) The independent variable is the scaled vertical coordinate133

ζ = −kΛz/f. (3.10)

We emphasise that for k > 0, as will be assumed when interpreting the results, ζ has a sign134

opposite to that of z and is positive below the inertial level and increasing downwards.135

The dependent variable ŵ is the horizontal Fourier transform of w1, defined by136

w1 =
1

2π

∫ ∞
−∞

∫ ∞
−∞

ŵ(k, l)eik·x dkdl. (3.11)

The other dependent variables are related to ŵ through the polarization relations137

û = i
−Λ
f

(
ζ − iν

ζ(1 + ν2)
ŵζ +

ν2

ζ(1 + ν2)
ŵ

)
, (3.12a)

v̂ =
Λ

f

(
1− iνζ

ζ(1 + ν2)
ŵζ +

iν

ζ(1 + ν2)
ŵ

)
, (3.12b)

b̂ = i
Λ2

f

(
1− iνζ

ζ2(1 + ν2)
ŵζ +

(
iν

ζ2(1 + ν2)
+
J2

ζ

)
ŵ

)
. (3.12c)

One of the key characteristics of IGWs in shear flow is the presence of singularities: two138

inertial levels, where the Doppler-shifted frequency matches the Coriolis frequency, and139

a critical level, where the Doppler-shifted frequency and hence the background velocity140

vanish (Jones 1967). These singularities are readily identified from (3.9): the two inertial141

levels and one critical level correspond to ζ = ±1 and ζ = 0, respectively. The critical142

level is an apparent singularity that can be removed by a variable transformation. The143

inertial levels, by contrast, have a marked physical impact since the wave solution switches144

abruptly from an oscillatory to an evanescent behaviour and back across them (Yamanaka145

& Tanaka 1984; Lott et al. 2015). As we discuss in §4, this abrupt change underpins the146

forcing of a mean flow by the wavepacket.147

Rotation plays a crucial role. The position z = ±f/(kΛ) of the inertial levels depends148

on the wavenumber k; as a result, the singularities associated with each wavenumber149

making up the wavepacket are smeared out over a range of altitude, and the wavepacket150

solution is smooth even in the absence of dissipation (or more precisely in the limit151

of vanishing dissipation since dissipation is important to determine physically relevant152

branches of solution; Shutts 2001). This is in contrast with the non-rotating scenario,153

best thought of as the limit f → 0 of the general situation. In this limit, the inertial154

levels coalesce with the critical level, leading to a stronger, k-independent singularity155

and to a singular behaviour of the wavepacket unless dissipation is introduced. (A similar156

smearing out of singularities across different altitudes also occurs without rotation when157

more complicated flows, such as the directional shear flow, are considered; Shutts 1995,158

2003, Martin & Lott 2007.)159

The term ‘inertial layer’ is used to describe the region where the effect of the inertial-160

level singularities is distributed. It is centred around the dominant inertial level,161

z∗ = − f

k∗Λ
, (3.13)

determined by the central wavenumber k∗ of the topography. Note that, for the problem162

under consideration, only the lower inertial levels matter since the waves are exponentially163

small in J at the upper inertial levels. Condition (3.4) ensures that z∗ > −H, that is,164

the dominant inertial level lies in the fluid domain. The characteristic thickness of the165
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inertial layer is found as166

δ∗ = − z∗
k∗
δk =

f

k2∗Λ∆
, (3.14)

on using that, according to expression (2.1) for the mountain height, the spectral width167

of the wavepacket is δk = ∆−1.168

Equation (3.9) for ŵ can be solved explicitly in terms of hypergeometric functions169

(Yamanaka & Tanaka 1984; Shutts 2001). We rely instead on the approximate WKB170

solution derived in Lott et al. (2012) (see also Lott et al. (2015)) and valid in the large-171

Richardson limit J � 1. For simplicity, we adopt the scaling172

J = O(Ro−1)� 1. (3.15)

Together with (3.3), this implies that NH/(f∆) = O(1), corresponding to an order-173

one Burger number based on the horizontal and vertical scales ∆ and H. In the WKB174

approximation, ŵ is given by175

ŵ =
ζ

ζb

(
ζb − 1

ζ − 1

)1/4−iν/2(
ζb + 1

ζ + 1

)1/4+iν/2

e−iJ
√
1+ν2D(ζ), (3.16)

where176

D(ζ) = ln(ζ +
√
ζ2 − 1)− ln(ζb +

√
ζ2b − 1), with ζb = kΛH/f. (3.17)

Note that we have normalized ŵ so that its bottom-boundary value is ŵ(ζb) = 1.177

Expression (3.16) holds for all real values of ζ except in small regions of O(J−2)178

thickness around the inertial levels ζ = ±1, provided that suitable branches of the179

multivalued functions are chosen (see Jones (1967); Lott et al. (2012, 2015)). The sign180

of the argument of the exponential is taken to be negative; this ensures that the wave is181

propagating upwards above the upper inertial level, that is, for ζ < −1 (see Booker &182

Bretherton (1967); note that the opposite, positive sign is found when the background183

velocity is increasing with altitude). The multivalued functions are continued from ζ > 1184

to ζ < −1 along a contour in the complex plane that passes below the singularities at185

ζ = ±1. In this way, the solution is decreasing exponentially with ζ between the inertial186

level (like exp(−J
√

1 + ν2 cos−1 ζ)) and experiences an overall absorption by the factor187

exp(−J
√

1 + ν2π) known to apply to both the rotating and non-rotating cases (Booker188

& Bretherton 1967; Jones 1967; Lott et al. 2015). The choice of continuation is dictated189

by considerations of causality which are readily settled by adding small damping terms190

in (3.5). It is in this sense that the problem is not treated as strictly inviscid but rather191

as a vanishing viscosity limit.192

The WKB approximation (3.16) breaks down near the inertial levels, specifically for193

||ζ| − 1| = O(J−2) where it should be replaced by an expression in terms of Hankel194

functions (Lott et al. 2012). These regions are narrow enough and the singularities of195

(3.16) at ζ = ±1 are mild enough that they can be ignored when computing the vertical196

velocity of the complete wavepacket.197

Substituting the form (2.1) of the topography into the boundary condition (3.6), we198

obtain the vertical velocity at the boundary as the Fourier expansion199

w1b =
iUbh∆

2

2π

∫ ∞
−∞

∫ ∞
−∞

ke−|k−k∗|
2∆2/2eik·x dkdl. (3.18)

Here and henceforth, a real part is implied. Combining this with (3.11) and (3.16) leads200
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to the vertical velocity of the wavepacket in the form201

w1 =
iUbh∆

2

2π

∫ ∞
−∞

∫ ∞
−∞

ke−|k−k∗|
2∆2/2ŵ eik·x dkdl. (3.19)

Note that, because ŵ is exponentially small for ζ < 1 as a result of wave absorption, the202

lower limit of the integral in k could be taken as −fΛ−1z−1. This absorption is crucial203

for the impact of the wavepacket on the mean flow.204

3.2. Saddle-point approximations205

The solution (3.19) can be further simplified by taking advantage of the assumptions206

J � 1 and k∗∆ � 1 to apply a saddle-point approximation. The key is to identify the207

dominant terms in the argument of the exponential, including a contribution from ŵ. To208

avoid defining several new dimensionless numbers measuring the relative size of J , k∗∆209

and Ro, it is expedient to introduce a bookkeeping parameter ε which keeps track of the210

orders of various terms. This parameter is treated as formally small and used as a basis211

for a saddle-point approximation, but it is set to 1 at the end of the computation to obtain212

asymptotic formulas in a convenient dimensional form. The bookkeeping parameter ε is213

introduced through the replacements214

k∗∆ 7→ ε−1k∗∆, J 7→ ε−1J and Ro 7→ εRo, (3.20)

in accordance with the scalings (3.3) and (3.15). Thus the formal smallness of ε captures215

at once the mountain scale separation, the large Richardson number, and the small216

Rossby number.217

Introducing (3.20) into (3.19) leads to218

w1 =
iUbhk∗∆

2

2πε

∫ ∞
−∞

∫ ∞
−∞

e−|k−ε
−1k∗|2∆2/2ŵeik·x dkdl, (3.21)

where219

ŵ =
ζ

ζb

(
ζb − 1

ζ − 1

)1/4−iν/2(
ζb + 1

ζ + 1

)1/4+iν/2

e−iε
−1J
√
1+ν2D(ζ), (3.22)

and makes the dependence on ε explicit. In writing this expression, we have made a220

first approximation by replacing the wavenumber k outside the exponential functions by221

its leading-order approximation k∗. The error introduced is negligible as can be verified222

below once the size of the neighbourhood of k∗ controlling the integral is estimated.223

A second approximation is made in carrying out the integration with respect to l in224

(3.21). Because the integral is dominated by values of l near ε−1l∗, we write225

l = ε−1l∗ + L, (3.23)

where εL/l∗ � 1, leading to the following expressions226

ν =
l∗
εk

(
1 + ε

L

l∗

)
, (3.24)

√
1 + ν2 =

√
1 +

(
l∗
εk

)2

+ ε
l∗L

εk
√

(εk)2 + l2∗
+O

((
ε
L

l∗

)2
)
, (3.25)

where εk is treated as O(1) since k is close to ε−1k∗. Substituting these into (3.21) and227
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neglecting O((εL/l∗)
2), we obtain228

w1 =
iUbhk∗∆

2

2πε

∫ ∞
−∞

∫ ∞
−∞

e−(∆L)
2/2−iJl∗(εk)−1((εk)2+l2∗)

−1/2D(ζ)L+iLydL

× e−(k−ε
−1k∗)

2∆2/2 ζ

ζb

(
ζb − 1

ζ − 1

)1/4−iν∗/2(ζb + 1

ζ + 1

)1/4+iν∗/2

× e−iJε
−1(1+l2∗/(εk)

2)1/2D(ζ)+ikx dk

.
=
Ubhk∗∆

ε
√

2π

∫ ∞
−∞

e−(y−Jl∗(εk)−1((εk)2+l2∗)
−1/2D(ζ))

2
/(2∆2)

× e−(k−ε
−1k∗)

2∆2/2 ζ

ζb

(
ζb − 1

ζ − 1

)1/4−iν∗/2(ζb + 1

ζ + 1

)1/4+iν∗/2

× e−iJε
−1(1+l2∗/(εk)

2)1/2D(ζ)+ikx dk.
(3.26)

In the second line, we have ignored a phase factor and introduced the symbol
.
= to denote229

an equality in modulus only, ignoring phase factors. In what follows, we pay only attention230

to the modulus of w1 since this controls the wave–mean flow interaction properties: the231

spatially averaged EP flux, which is quadratic in wave quantities, only depends on the232

wave amplitude and on the relative phase of various fields which is easily worked out.233

The appearance of the bookkeeping parameter ε−1 in the exponential in (3.26) mo-234

tivates the saddle-point approximation. To apply this, we need to compare the leading235

terms in the exponential, namely236

(k − ε−1k∗)2∆2/2 and iJε−1

(
1 +

(
l∗
εk

)2
)1/2

D(ζ). (3.27)

The first term stems from the finite spectral width of the mountain height; the second237

term, which depends on ζ and hence z, captures the vertical structure of the wave.238

We seek distinguished regimes, where the leading-order terms in (3.27) balance. This239

requires approximating D(ζ) to determine its order, a non-trivial task since the order of240

D(ζ) depends on the value of ζ, that is, on the particular range of altitude considered.241

Mathematically, different altitude ranges are captured by different values of α in the242

scaling243

z = z∗

(
1 +

(
ε

k∗∆

)α
Z

)
, (3.28)

where Z = O(1).244

Note that, since z∗ < 0, Z and z have different signs, with Z > 0 below the dominant245

inertial level and increasing downwards. Because ζ depends on both z and k, we also246

need to scale k to find range of wavenumbers controlling the integral in (3.26). Since the247

wavepacket is concentrated around ε−1k∗, we write248

k = ε−1k∗

(
1 +

(
ε

k∗∆

)β
K

)
, with K = O(1) and β > 0. (3.29)

Combining (3.28) and (3.29), we obtain249

ζ = −kΛz
f

= 1 +

(
ε

k∗∆

)β
K +

(
ε

k∗∆

)α
Z +O

((
ε

k∗∆

)α+β)
. (3.30)

We now need to distinguish two situations: (i) for α = 0, that is, away from the dominant250
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inertial level,251

D(ζ) = D(1 + Z) +O

((
ε

k∗∆

)β)
; (3.31)

(ii) for α > 0, that is, asymptotically close to the dominant inertial level,252

D(ζ) = D(1) +O

((
ε

k∗∆

)min{α,β}/2
)
. (3.32)

Because the leading-order terms in these two expansions are independent of k, hence do253

not contribute to the integration over k in (3.26), the order of the second terms is crucial.254

Using the scalings of the second terms of (3.31)–(3.32) in the second expression in (3.27),255

and balancing with the first expression (scaling like ε2β−2) leads to two distinguished256

regimes: Regime I, with α = 0 and β = 1, and Regime II, with α = β = 2/3 (since α = β257

gives a distinguished regime). In each regime, the coordinate x appearing in exp(ikx)258

should be scaled so that the K-dependent contribution to kx, proportional to εβ−1, be of259

the same order as the K-dependent terms in (3.27). This leads to x = O(∆) in Regime260

I and x = O(ε−1/3∆) in Regime II.261

We carry out the saddle-point expansion of (3.26) in these two regimes in Appendix262

A and only quote the final results here. In Regime I, after setting ε = 1, we find that263

w1
.
= hf(1 + ZI)

(
(k∗∆)2Ro2 − 1

2ZI + Z2
I

)1/4

e−(y−Jν∗k∗−1(1+ν2
∗)
−1/2DI)

2
/(2∆2)e−X

2
I /(2∆

2),

(3.33)
where264

XI = x− J

k∗

√1 + ν2∗

 1 + ZI√
2ZI + Z2

I

− k∗∆Ro√
(k∗∆)2Ro2 − 1

− ν2∗√
1 + ν2∗

DI

 , (3.34)

DI = ln(1 + ZI +
√

2ZI + Z2
I ) − ln(ζb∗ +

√
ζ2b∗ − 1), ZI = z/z∗ − 1 and ζb∗ = k∗ΛH/f .265

This makes clear that the wavepacket retains the bell shape of topography, with scale ∆,266

throughout its propagation across Regime I. The path of the wavepacket in the (x, z)-267

plane is determined by setting XI = 0 in (3.33), which corresponds to standard ray268

tracing. It shows in particular that the wavepacket diverges to infinity as it approaches269

the dominant inertial level, with x ∼ Jk−1∗ (1 + ν2∗)
1/2(2ZI)

−1/2 as ZI → 0. This is270

a limitation of the approximation made in Regime I (also a limitation of ray tracing)271

rather than a physical effect as the analysis of Regime II shows.272

In Regime II, and again with ε = 1, we find that273

w1
.
=

Ubhk
2
∗∆

21/4ε5/4(k∗∆)3/4
q(Ks)

(p′′(Ks))1/2
e(k∗∆)2/3p(Ks)g(y), (3.35)

where the y-dependence is controlled by the Gaussian274

g(y) = e−(y−Jν∗k∗−1(1+ν2
∗)
−1/2DII)

2
/(2∆2), (3.36)

with DII = − ln(ζb∗ +
√
ζ2b∗ − 1), and is decoupled from the dependence in x and z. In275

(3.35), the function p is defined by276

p(Ks) = −K
2
s

2
− iJ(k∗∆)

√
1 + ν2∗

√
2(Ks + ZII) + iKsXII, (3.37)

and Ks is one of its saddle point, satisfying p′(Ks) = 0, where the prime denotes277
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derivative. The other symbols introduced are278

q(Ks) =
1

(Ks + ZII)1/4
, (3.38)

279

XII = (k∗∆)−4/3

k∗x+ J

 k∗
√

1 + ν2∗∆Ro√
(k∗∆)2Ro2 − 1

+
ν2∗√

1 + ν2∗
DII

 , (3.39)

and ZII = (k∗∆)2/3(z/z∗ − 1). The saddle point Ks satisfies a cubic equation whose280

analytic solution is not particularly illuminating; we will solve it numerically. It is selected281

among the three roots of the cubic by the condition that it be accessible by a steepest-282

descent path connecting −∞ to∞. For large ZII, the expansion
√

2(Ks + ZII) ∼
√

2ZII+283

Ks/
√

2ZII can be used to confirm the matching between Regime I and Regime II. The284

behaviour for small ZII is key for the mean-flow forcing. As discussed in §3.1, the change285

in EP flux is concentrated in the inertial layer, such that |z − z∗| = O(δ∗) with δ∗ given286

in (3.14). This corresponds to the scaling287

Z = ε−1k∗∆

(
z

z∗
− 1

)
= O(1), (3.40)

hence to α = 1 in (3.28) and thus ZII = O(ε1/3) � 1. For this range of Z, the integral288

in (3.26) is dominated by wavenumbers k in an O(1) neighbourhood of the central289

wavenumber ε−1k∗, corresponding to β = 1 in (3.29). The associated regime, which290

we term Regime IIB, is a limit Regime II, obtained when some terms are negligible291

(notably the first term in the phase function (3.37)). This makes it possible to derive292

an expression for w1 simpler than (3.35)which we will subsequently use to compute the293

mean-flow forcing. This expression is derived in Appendix A.3 and given by294

w1
.
=
hfJ1/2

(
1 + ν2∗

)1/4 (
(k∗∆)2Ro2 − 1

)1/4
(k∗∆)1/2X

e−(a2/X2−Z)
2
/2g(y), (3.41)

where295

a =
J
√

1 + ν2∗√
2k∗∆

(3.42)

and296

X = (k∗∆)−3/2

k∗x+ J

 k∗
√

1 + ν2∗∆Ro√
(k∗∆)2Ro2 − 1

+
ν2∗√

1 + ν2∗
DII

 . (3.43)

According to this, the wavepacket is centred on the curve297

X = Xc =

(
J2
(
1 + ν2∗

)
(k∗∆)2(Z +

√
2 + Z2)

)1/2

(3.44)

in the (X,Z)-plane (obtained by maximising (3.41)) and localized in a region of order-298

one size in both the X and Z direction. In view of (3.40) and (3.43), this corresponds299

to a region of streamwise extent O((k∗∆)1/2∆), thus much larger than the size ∆ of300

the mountain, located an O((k∗∆)1/2∆) distance downstream of the topography, and of301

O(δ∗) vertical extent. Thus, the prediction of ray tracing of a wavepacket that diverges302

to infinity as the dominant inertial level is approached is replaced in Regime IIB (and303

hence in Regime II) by a large-but-finite horizontal shift.304
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Figure 2. Vertical velocity amplitude |w1| in the (x, z) plane obtained by numerical integration
of (3.21) for the parameters in (3.45) (7 equispaced contours with velocity in the range

[0.04, 0.28] × Uhk∗/
√

2π are shown). The inset is a zoom on the rectangle region indicated
in the main panel.

We remark that the three regimes identified by the saddle-point analysis can be305

interpreted physically. Regime I is the ray-tracing regime, which is unaffected by the306

singularities of the wave solution. Regime II is controlled by the singularity at the lower307

inertial level, and Regime IIB is its part dominated by inertial-level absorption.308

3.3. Numerical results309

In this section, we compare the asymptotic predictions for w1 with direct numerical310

computations of the integral in (3.26). We first take the parameters311

Ro = 0.02, k∗∆ = 100, l∗∆ = 100, J = 100 and ν∗ = 1, (3.45)

so ζb∗ = k∗∆Ro = 2. These are not particularly realistic but enable a comparison in312

conditions where the asymptotic assumptions hold unambiguously. Realistic parameters313

are considered at the end of the section. We concentrate on the amplitude |w1| in the314

(x, z) cross-section where it is maximum, since the structure in y is simply the Gaussian315

structure of the mountain envelope, albeit with a shift.316

Figure 2 shows a contour plot of |w1| obtained numerically. Away from the dominant317

inertial level, k∗Λz/f = −1, the wavepacket is only sightly deflected from the vertical.318

Closer to the dominant inertial level, the wavepacket shows a significant bend; we can319

read off from the inset that the peak of the wavepacket at the dominant inertial level320

is around x/∆ ≈ 12, in agreement with the peak value predicted in (3.43) which gives321

Xc = 21/4. This figure is more a qualitative illustration than a quantitative comparison322

which we carry out next.323

Figure 3 provides a detailed comparison of the numerical and asymptotic predictions324

for |w1|. Its four panels show |w1| as a function of x/∆ at four different altitudes. Panel325

(a) corresponds to −k∗Λz/f = 1.5, sufficiently far below the dominant inertial level for326

the Regime I asymptotics to be apply. As expected, the asymptotic predictions of Regime327

I (solid line) matches the numerical results (circles), with a wavepacket that takes the bell328

shape of the mountain enevelope, while the predictions of Regime II (dashed line) do not.329
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(b) −k∗Λz/f = 1.05
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(c) −k∗Λz/f = 1.01
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Figure 3. Vertical velocity amplitude |w1| normalized by Uhk∗/
√

2π as a function of x/∆ for
the altitudes given by −k∗Λz/f = 1.5 (a), 1.05 (b), 1.01 (c) and 1 (d), and the parameters in
(3.45). Numerical results (circles) are compared with the asymptotic predictions of Regime I
(solid line, shown in panels (a)–(c)), Regime II (dashed line), and Regime IIB (dash-dotted line,
shown in panels (b)–(d)).

Panel (b) shows the wavepacket closer to the dominant inertial level, for −k∗Λz/f = 1.05,330

in a region where Regime I and Regime II overlap: the predictions of both regimes match331

the numerical results. The Regime IIB approximation is also shown (dash-dotted line)332

and, unsurprisingly, is found to be invalid. Closer still to the dominant inertial level, as333

shown in panel (c) for −k∗Λz/f = 1.01, the Regime I approximation breaks down. The334

Regime II predictions match the numerical results closely, while those of Regime IIB are335

accurate for x large enough. As expected, the wavepacket is no longer bell shaped, and336

its peak is shifted by an O((k∗∆)1/2∆) amount to the right (since x/∆ ≈ 10 = (k∗∆)1/2)337

in agreement with (3.43) and (3.44). Finally, at the dominant inertial level as shown338

in panel (d), the predictions of both Regime II and Regime IIB coincide and match339

the numerical results in most of range of x, except to the very left of the peak where340

Regime IIB underestimates the amplitude. As discussed above, the peak of the wavepacket341

remains at a finite O((k∗∆)1/2∆) position. Crucially for mean-flow forcing, the maximum342

amplitude is also strongly reduced as a result of absorption.343

We now consider a more realistic parameter choice relevant to the atmosphere. Taking344

N = 1.4× 10−2 s−1, f = 10−4 s−1, Λ = 1.4× 10−4 s−1, H = 5 km, ∆ = 3.5× 102 km and345

k∗ = 2.8× 10−4m−1 gives346

Ro = 0.4, k∗∆ = 5, l∗∆ = 5, J = 5 and ν∗ = 1, (3.46)

so ζb∗ = k∗∆Ro = 2. The results for the form of the wavepacket are shown in Fig.347

4. The accuracy of the asymptotic approximations has degraded considerable compared348

with that in Fig. 4, unsurprisingly, perhaps, given that the error scales like Ro1/2 ≈349
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Figure 4. Same as Fig. 3 but for the parameters in (3.46) and for −k∗Λz/f = 1.5 (a), 1.35
(b), 1.2 (c), 1 (d).

0.6. Nonetheless, there remains a reasonable qualitative match between asymptotic and350

numerical results which suggests our approximations remain useful.351

4. Wave–mean-flow interaction352

Section 3 shows that the wave amplitude changes suddenly across the inertial layer.353

In this section, we exploit our asymptotic expression for the wavepacket structure to354

derive the mean force exerted in this layer as a result of this change, and to calculate the355

mean-flow response. The important quantity for this force is the EP flux, which has long356

been recognized as the relevant diagnostic (Eliassen & Palm 1961; Andrews & McIntyre357

1976; Boyd 1976; Edmon et al. 1980).358

Two types of mean-flow response need to be distinguished: the far-field response, and359

the local response. The far-field response is the net change in the mean flow that persists360

far downstream of the mountain; it is a consequence of a change of the horizontally361

integrated EP flux due to absorption. In contrast, the local response is the mean-flow362

change caused by local EP flux changes without far-field impact because they integrate to363

zero horizontally. As discussed in §3, the net EP flux change is concentrated in the inertial364

layer where the Regime IIB approximation applies; below this, the waves are transient365

horizontally in space and leave no net mean-flow response, in agreement with non-366

acceleration results. In the remainder of this section, we derive the equation governing367

mean-flow response (§ 4.1), compute the EP flux divergence that appears as the sole368

forcing term in this equation (§ 4.2), and compute the mean-flow change asymptotically,369

taking advantage of the the thinness of the inertial layer (§ 4.3)370
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4.1. Governing equation371

Taking advantage of the small Rossby number, the mean flow is calculated using quasi-372

geostrophic theory. By taking the horizontal curl of the horizontal momentum equation373

(2.2a), applying ∂zf/N
2 to (2.2c) and using the incompressibility (2.2d), we obtain374

∂t

(
vx − uy + ∂z

(
f

N2
b

))
+ (∂xx − ∂yy)(uv) + ∂xy(v2 − u2)︸ ︷︷ ︸

(a)

+ ∂z

(
f

N2
∂z(wb)

)
︸ ︷︷ ︸

(b)

+ ∂xz

(
wv +

f

N2
ub

)
− ∂yz

(
wu− f

N2
vb

)
︸ ︷︷ ︸

(c)

= 0.(4.1)

The waves and mean flow are separated by the small-scale average defined as375

〈 · 〉 =
1

D2

∫ x+D

x

∫ y+D

y

· dx′, (4.2)

where k−1∗ � D � ∆. Because of their small spatial scale, the waves have zero average.376

Applying this average to (4.1), and using the smallness of the wave amplitude and Rossby377

number to retain the leading order terms for both wave and mean flow, we obtain378

(∂t + Λz∂x)

(
∇⊥ ·U + ∂z

(
f

N2
〈b2〉

))
+∇⊥ · ∂zF = 0, (4.3)

where ∇⊥ = (−∂y, ∂x) denotes the horizontal curl, and379

F =

(
〈u1w1〉 −

f

N2
〈v1b1〉 , 〈v1w1〉+

f

N2
〈u1b1〉

)
(4.4)

is the vertical part of the Eliassen–Palm (EP) flux Eliassen & Palm (1961). In (4.3), the380

mean flow is in geostrophic balance, with381

〈u2〉 = (U , 0) = (U, V, 0) = (−∂yΨ, ∂xΨ, 0) and 〈b2〉 = f∂zΨ, (4.5)

where the streamfunction Ψ remains to be determined.382

If there is no wave effect, F = 0, (4.3) reduces to the quasi-geostrophic potential-383

vorticity (QGPV) equation. Note that term (c) in (4.1) is the only quadratic wave term384

to contribute to (4.3): term (a) is O(δ∗/H) smaller than term (c) because of the vertically385

thinness of inertial layer; term (b) has zero average because w1 and b1 are out of phase386

in the limit of large J (see (3.12c)).387

The boundary condition associated with (4.3) is obtained by taking the average of388

(2.3), retaining terms up to second order in the wave amplitude to find389

〈w2〉 = 〈u1 · ∇ht − ht∂zw1 − Λht∂xht〉 = 〈u1 · ∇ht + ht∇ · u1 − Λht∂xht〉
=
〈
∇ · (u1ht)− Λ∂x

(
h2t/2

)〉
= 0, (4.6)

where u1 = (u1, v1), and the incompressibility condition (3.5d) is used.390

One significant feature of the EP flux is its conservation when the background flow391

possesses certain symmetries, leading to the non-acceleration theorem (Charney & Drazin392

1961): waves do not force the mean flow unless there exists a singularity or some393

dissipation. In our setup, the background shear flow has x- and y-symmetry, and EP394

flux conservation is easily demonstrated for a plane wave with wavevector k = (k, l):395

applying the polarization relation (3.12) to (4.4), we obtain the plane-wave expression of396
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the EP flux,397

F = (F, νF ), with F =
−Λ
f

1

1 + ν2
Re

(
i
1− ζ2

ζ2
ŵζ(k)ŵ∗(k)− ν ŵ(k)ŵ∗(k)

ζ2

)
. (4.7)

Its conservation is deduced from (3.9) by multiplication of ŵ by its complex conjugate398

ŵ∗ and subtraction of the conjugate of the resulting equation to find399

∂zF = 0. (4.8)

This conservation does not hold across the inertial level singularities ζ = ±1. Across the400

lower one, ζ = 1, the plane wave EP flux attenuates to an exponentially small value,401

leading to the wave forcing of the mean flow in the inertial layer (Regime IIB). We now402

compute the EP flux in this layer.403

4.2. Eliassen–Palm flux404

The derivation of the EP flux is greatly simplified by observing that, in the saddle-405

point approximations valid in Regimes I and II, the relations of the various wave fields406

u1, v1, etc. associated with the wavepacket to w1 mirror the polarisation relations (3.12).407

This is because the rapid dependence in x of the wave solution corresponds to a plane408

wave with (possibly complex) wavenumber ks given by a saddle-point value of k (see409

Appendix A). Using the notation ζs = −ksΛz/f , we obtain410

u1 =
i(ζs − iν∗)

Ksζs(1 + ν2∗)
w1z −

iΛν2∗
fζs(1 + ν2∗)

w1, (4.9a)

v1 = − 1− iν∗ζs
Ksζs(1 + ν2∗)

w1z +
iΛν∗

fζs(1 + ν2∗)
w1, (4.9b)

b1 = − iΛ(1− iν∗ζs)

Ksζ2s (1 + ν2∗)
w1z + i

Λ2

f

(
iν∗

ζ2s (1 + ν2∗)
+
J2

ζs

)
w1, (4.9c)

where we also have used that νs = ls/ks ∼ l∗/k∗ = ν∗ to leading order. Correspondingly,411

a derivation that parallels that of (4.7) gives the x-component of the wavepacket EP flux412

as413

F =
1

1 + ν2∗
Re

(
i

ks

1− ζ2s
ζ2s

w1zw
∗
1 − ν∗

w1w
∗
1

ζ2s

)
. (4.10)

This can be simplified further. Focussing on Regime IIB, we observe that the O(ε)414

vertical scale implies that the first term in the brackets in (4.10) dominates the second,415

that ks can be approximated by k∗, and that ζs can be approximated by 1 except in the416

factor 1− ζs of 1− ζ2s . This leads to the simple expression417

F =
2(1− ζs)
k∗(1 + ν2∗)

Re (iw1zw
∗
1) . (4.11)

Now, using that ∂z = −k∗∆Λ∂Z/f , we obtain from the form of w1 in (A 15) that, to418

leading order,419

w1z ∼
i(k∗δ)

3/2k∗Λ

f
w1. (4.12)

Introducing this result into (4.11) and using that420

ζs = 1 +
1

k∗∆
(Ks + Z), (4.13)
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Figure 5. Contours of the EP flux in (4.15) normalized by the largest value at the bottom

(3/4)3/4e−3/4E for the parameters in (3.45); 7 equispaced contours in the range [0.125, 0.875]
are shown. The contours can be compared with those of the vertical velocity |w1| shown in Fig.
2: although the two fields obey the same scaling, the maximum of the EP flux is closer to the
mountain. The inset zooms on the rectangular box indicated in the main panel.

together with the explicit form (A 14) of Ks, we find that421

F =
J2Λ

(k∗∆)3/2fX
|w1|2. (4.14)

The explicit form of w1 in (3.41) can finally be used to obtain the explicit expression422

F =
E

X3
e−(a2/X2−Z)

2

g2(y), (4.15)

where423

E =
J3Λh2f

(
(k∗∆)2Ro2 − 1

)1/2 (
1 + ν2∗

)1/2
(k∗∆)5/2

(4.16)

is a constant controlling the amplitude of F . This expression only holds for X > 0; for424

X < 0, the EP flux is exponentially small. We emphasise the remarkably simple form425

of (4.15): notwithstanding the many parameters involved, the formula is well suited for426

practical use in parameterisations.427

We illustrate the form of the EP flux in Fig. 5 by showing its contours in the (x, z) cross-428

section where it is maximised, using the parameters in (3.45). The EP flux is computed429

from the WKB linear solution (3.19) and polarization relation (3.12). The validity of the430

asymptotic approximation is confirmed by Fig. 6 which compares the EP flux obtained431

numerically with the asymptotic approximation at the dominant inertial level.432

By integrating (4.15) over x and y, we obtain the horizontally integrated EP flux433

F =
πJ∆2Λh2f

(
(k∗∆)2Ro2 − 1

)1/2
2 (1 + ν2∗)

1/2
(1 + erfZ), (4.17)

where the decay of the error function to 0 as Z → −∞ (above the inertial layer) clearly434

captures wave absorption. As Z → ∞, i.e., well below the dominant inertial level, F435



Interactions between mountain waves and shear flow 17

x/∆
0 10 20 30 40

F
/
E

0

0.2

0.4

0.6

Figure 6. EP flux at the dominant inertial level for the parameters in (3.45): numerical
results (circles) are compared with the prediction of the Regime IIB approximation (solid line).

tends to the constant value436

F tot =
πJ∆2Λh2f

(
(k∗∆)2Ro2 − 1

)1/2
(1 + ν2∗)

1/2
. (4.18)

This matches the horizontally integrated EP flux at the ground, since the flux is conserved437

below the inertial layer. We check this in Appendix B. We note that F tot is finite in the438

limit f → 0 where it is given by F tot = πNΛ∆2h2k∗H. From (4.17), we can also estimate439

the wave drag per unit area, defined as the vertical derivative of horizontally integrated440

EP flux divided by ∆2:441

f(Z) =
∂zF (Z)

∆2
= −
√
π

2
ΛN∆h2k2∗

k∗
|k∗|

((k∗∆)2Ro2 − 1)1/2e−Z
2

, (4.19)

where |k∗| =
√
k2∗ + l2∗ is the amplitude of dominant wavenumber.442

4.3. Mean-flow response443

We now consider the mean-flow response to the wave drag associated with the z-444

dependent EP flux (4.15). We compute the steady flow response by solving the QGPV445

equation (4.3) asymptotically, taking advantage of the thinness of the inertial layer where446

the wave drag acts to apply matched asymptotics. Thus the domain z > −H is separated447

into an inner region around the inertial level z ≈ z∗, specifically Z = −k2∗∆Λ(z−z∗)/f =448

O(1), and an outer region where the wave drag is absent. Simplifications arise because the449

spatial scale in the x-direction is longer than in the y-direction; this is made explicit using450

the variable X defined in (A 16), with X = O(1) implying that x = ∆×O((k∗∆)1/2)451

We denote the streamfunction associated with the wave-induced mean flow in the452

inner and outer regions by Ψ(X, y, Z) and ψ(X, y, z), respectively. In the inner region,453

considering the scalings of Regime IIB, the steady (∂t = 0) QGPV equation (4.3) becomes454

ε1/2k∗(k∗∆)−3/2(U∗∂X +∇⊥Ψ · ∇)

(
εk2∗(k∗∆)−3∂XXΨ + ∂yyΨ +

k4∗∆
2

ε2J2
∂ZZΨ

)
=
k2∗Λ∆

ε2f
∂yZF, (4.20)
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where ∇ and ∇⊥ are gradients with respect to the scaled variables (X, y), U∗ = −Λz∗ =455

f/k∗ is the background velocity at the dominant inertial level, and we have included the456

bookkeeping parameter ε. On the right-hand side we have neglected the x derivative of457

∂zF against the y-derivative, owing to the asymptotically larger scales in x.458

For sufficiently small mountain height, Eq. (4.20) can be linearised; we make explicit459

below the condition for this approximation to hold. Retaining only the leading-order460

terms in (4.20) reduces this to461

k3∗(k∗∆)1/2

ε3/2J2
U∗∂XZZΨ =

k2∗Λ∆

ε2f
∂yZF. (4.21)

Since F is exponentially small for X < 0, we can integrate (4.21) for X > 0 to obtain462

∂ZZΨ = Q, (4.22)

where463

Q = Q(X, y, Z) =
J2Λ(k∗∆)1/2

ε1/2U∗k2∗f

∫ X

0

∂yZF (X ′, y, Z) dX ′ (4.23)

can be interpreted as a scaled wave-induced PV. This can be computed explicitly using464

(4.15) to find465

Q =
J3Λ2∆h2((k∗∆)2Ro2 − 1)1/2

f(k∗∆)(1 + ν2∗)
1/2

e−(a
2/X2−Z)2∂yg

2. (4.24)

Eq. (4.22) is readily integrated, leading to466

Ψ(X, y, Z) =

∫ Z

0

∫ Z′

0

Q(x, Y, Z ′′) dZ ′dZ ′′ + C1(X, y)Z + ε−1C2(X, y), (4.25)

where C1 and C2 are integration ‘constants’ that are determined by matching the outer467

solution. We have anticipated that the Z-independent term is an order ε−1 larger than468

the other terms. Matching requires the asymptotic behaviour of Ψ as Z → ±∞, found469

to be470

Ψ(X, y, Z) ∼Z
(∫ ±∞

0

Q(X, y, Z ′) dZ ′ + C1(X, y)

)
+ ε−1C2(X, y)

−
∫ ±∞
0

Z ′Q(X, y, Z ′) dZ ′ (4.26)

as Z → ±∞.471

In the outer region, the QGPV equation (4.3) is472

Λz∂X

(
∂yyψ + εk2∗(k∗∆)−3∂XXψ +

f2

N2
∂zzψ

)
= 0, (4.27)

which, to the leading order, reduces to473

Λz∂X(∂yyψ +
f2

N2
∂zzψ) = 0. (4.28)

Integrating in X, we find that474

∂yyψ +
f2

N2
∂zzψ = 0. (4.29)

This is best solved using a Fourier transform in the y direction. Denoting this transform475
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by a hat, we have476

ψ̂ =

{
ε−1Ĉ3(X, l)e−N |l|(z−z∗)/f for z > z∗

ε−1Ĉ4(X, l)e−N |l|(z−z∗)/f + ε−1Ĉ5(X, l)eN |l|(z−z∗)/f for z < z∗
, (4.30)

applying a vanishing boundary condition as z → ∞. Combining the condition (4.6) of477

zero mean vertical velocity with the buoyancy equation U∂Xψz = 0 stemming from478

(2.2c), we find the condition ψz = 0 at the lower boundary z = −H. This implies479

Ĉ4eN |l|(H+z∗)/f = Ĉ5e−N |l|(H+z∗)/f . (4.31)

We now match (4.30) to (4.26) to determine Ĉ3, Ĉ4 and Ĉ5, and hence the outer480

solution, completely. Substituting z − z∗ = −εfZ/(k2∗∆Λ) into (4.30), expanding in481

powers of ε and matching with (4.26), we find that482

Ĉ4 + Ĉ5 = Ĉ3 (= Ĉ2), (4.32)

and483

Ĉ4 − Ĉ5 − Ĉ3 =
k2∗∆

J |l|

∫ ∞
−∞

Q̂(X, l, Z ′) dZ ′

=

√
πJ2(k∗∆)Λ2h2((k∗∆)2Ro2 − 1)1/2

f(1 + ν2∗)
1/2

∂̂yg2

|l|
. (4.33)

Thus, (4.31), (4.32) and (4.33) provides three equations for Ĉ3, Ĉ4 and Ĉ5 and hence484

determine the mean flow.485

Remarkably, the right-hand side of (4.33) does not depend on X. As a result, ψ, Ψ and486

thus the entire mean-flow response does not change downstream of the mountain. Our487

solution suggests that there is a jump in this response, from a zero value for X < 0 to the488

X-independent value for X > 0. This is an artefact of the asymptotic approximation:489

the transition to a non-zero mean flow is in fact smooth. Its detailed form could be490

obtained using the approximation of the wave fields in Regime II. Here we only note that491

the scaling of Regime II indicates that the transition region has a characteristic length492

x/∆ = O((k∗∆)1/3), asymptotically smaller than the O((k∗∆)1/2) scale that is resolved493

by the Regime IIB approximation used in our computation of the mean-flow response,494

hence the apparent discontinuity.495

Eq. (4.33) provides an estimate for the order of magnitude of the mean-flow response.496

Recalling that the change in mean velocity is −∂yψ with the y-scale ∆, and noting that497

the maximum value of ψ is O(Ĉ3), we estimate the wave-induced mean velocity as498

Uw = O

(
J2(k∗∆)Ro

(
h

H

)2

Ub

)
. (4.34)

Since (k∗∆)Ro = O(1), this indicates that Uw � Ub, as required for the linearisation of499

the QGPV equation, provided that J(h/H)� 1.500

To illustrate our results, we have calculated the mean-flow response for J = k∗∆,501

l∗ = 0 and ζb∗ = 2. The linear system (4.31), (4.32) and (4.33) is readily solved for Ĉ3,502

Ĉ4 and Ĉ5, leading to ψ̂ and, after Fourier inversion, to the mean flow 〈u2〉 = −∂yψ. This503

is displayed in Fig. 7. Observe that the mean-flow response to the wave drag localised504

in the thin inertial layer is distributed through the entire depth of the fluid, and that505

the total mean-flow change
∫
〈u2〉dy vanishes at each altitude since the streamfunction506

ψ vanishes as y → ±∞.507
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Figure 7. Mean-flow response. Left: contours of the wave-induced mean flow 〈u2〉, with the
sign is indicated by ±; 20 equispaced contours in the range [−0.52, 0.13] are shown. Right: 〈u2〉
at z/H = −0.9, −0.5, 0, with z = −0.5 corresponding to the dominant inertial level. The mean

flow is normalized by
√

3πk∗J
2Λ2h2/f .

5. Conclusion508

In this paper, we study the propagation of a mountain IGW wavepacket in a rotating509

shear flow and the mean flow generated as a result of wave absorption at inertial-level510

singularities. The broad wavenumber spectrum of the wavepacket and the dependence511

of the inertial-level altitude on wavenumber lead to a smearing-out of the singularities512

over a finite-thickness inertial layer where the mean-flow forcing concentrates. Thus,513

in contrast with the situation when rotation is neglected, dissipative processes can be514

neglected completely (except in brunch choosing across singularities) in the computation515

of the wavepacket and mean-flow response.516

By applying a steepest descent method, we obtain explicit approximations for the form517

of the wavepacket in different regions characterised by their distance to the dominant518

inertial level, that is, the inertial level corresponding to the central wavenumber of the519

mountain profile. Our main conclusions concern the scaling of the wave solution and520

mean-flow forcing; they are indicated in Fig. 8. In Regime I, the wavepacket is sufficiently521

far away from the dominant inertial level that singular effects are not important. Standard522

ray-tracing results apply: the wavepacket resembles the topography, with envelope scale523

∆. In Regime II the wavepacket is close to the dominant inertial level and hence strongly524

affected by the inertial-level singularity in the vertical structure (3.22) corresponding to525

a single wavenumber. As a consequence, ray tracing does not apply, and the wavepacket526

has a characteristic streamwise scale (k∗∆)1/3∆, much longer than the scale of the527

topography. In Regime IIB, a subregime of Regime II, the wavepacket is closer still to528

the dominant inertial level and is absorbed. We pay special attention to this regime since529

it is relevant to the region where the horizontally-integrated EP flux varies vertically,530

leading to a drag on the mean flow. Qualitatively, our most important conclusion is531

about the location of this region, found to be an O((k∗∆)1/2∆) distance downstream532

of the mountain and to have an O((k∗∆)1/2∆) horizontal extent. Since k∗∆ � 1, this533

makes it evident that mountain waves exert their drag far downstream of the mountain.534

This is in sharp contrast with their parameterisations in atmospheric models which are535

typically columnar, assuming that wave propagation is purely vertical and imposing their536

wave drag right above the wave source (see Hasha et al. 2008, however).537

Using the form of the wave solution in Regime IIB, we compute the far-field mean-538
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x

z

Ray tracing

Regime I

(k∗∆)1/2∆

Dominant inertial level

Shear flow

H

(k∗∆)1/2∆

Wavepacket

k−1
∗

Topography

∆

Regime IIB: (k∗∆)−1H

Regime II: (k∗∆)−2/3H

z = −H

z = 0

Figure 8. Scaling regimes for the mountain wavepacket: the wavepacket is generated by a
backsheared flow over a two-scale topography, with a scale separation characterised by k∗∆� 1.
Two distinguished regimes are found: Regime I and Regime II corresponding to distances from
the dominant inertial level that are O(H) and O((k∗∆)−2/3H), respectively. The wave drag is
localised in a region described by the limiting Regime IIB, of thickness of O(k∗∆H) around the

dominant inertial level. This region is located a large, O((k∗∆)1/2∆) distance downstream of

the mountain and extending horizontally over an O((k∗∆)1/2∆) scale.

flow response, taking advantage of the smallness of the Rossby number to use a quasi-539

geostrophic approximation. The vertical divergence of the EP flux, which controls the540

mean-flow response in this approximation, is localised in the thin inertial layer, with541

vertical scale H/(k∗∆). The mean-flow response itself, however, has a large scale in both542

the horizontal and vertical directions because of the non-locality in the diagnostic relation543

between the mean potential vorticity and mean streamfunction in the quasi-geostrophic544

approximation.545

An interesting feature of the mean-flow generation predicted by the Regime IIB546

approximation is that it is zero in the region with X = k
−1/2
∗ ∆−3/2x < 0 but jumps547

to an X-independent value for X > 0. Implicit to this prediction is an assumption548

that X = O(1), which gives the characteristic horizontal scale of the wavepacket in the549

inertial layer. The mean flow is in fact smoothly switched on over a shorter characteristic550

scale, specifically, x/∆ = O((k∗∆)1/3). This result can be obtained using the Regime II551

approximations, but we do not carry out detailed calculations which are complicated by552

the presence of a branch cut in (3.35).553

We emphasise that our results are more general than might seem at first glance. Our554

derivations are based on the distinguished scaling Ro = O((k∗∆)−1), J = O(k∗∆), with555

k∗∆� 1, and Jh/H � 1. In fact, their validity only requires that556

J
h

H
� 1, k∗∆� 1, J � 1, Ro� 1 and

k∗ΛH

f
> 1, (5.1)

corresponding to the validity of the hypotheses of (i) linear wave, (ii) scale separation of557

the mountain height, (iii) WKB scaling as in Lott et al. (2012), (iv) quasi-geostrophic558

mean flow, and (v) the dominant inertial level located above ground, ensuring that the559

argument of the square root in (4.19) is positive. If the conditions in (5.1) are satisfied560

but the scaling differs from the assumed distinguished scaling, e.g. because J � k∗∆,561
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our results continue to hold and could in fact be simplified by taking into account the562

existence of additional small parameters, such as ∆k∗/J in our example.563

We conclude by assessing the validity of the assumption of infinitesimally small564

viscosity, which leads to a vertical scale of wave absorption given by the inertial-layer565

thickness (3.14). For a finite viscosity, the viscous vertical scale δd = (νN2/k∗)
1/3/Λ is566

found by considering the Taylor–Goldstein equation with dissipation, D2
t∇2w+N2wxx =567

νDt∇4w, with Dt = Λz∂x. The ratio δd/δ∗ which measures the relative strength of568

viscosity and rotation in setting up the wave vertical scale is then found as δd/δ∗ =569

∆k
5/3
∗ (νN2)1/3/f , independent of the shear Λ and relatively insensitive to the value570

of ν. Taking the atmospheric values ν = 10−8 m2s−1, N = 10−2 s−1, f = 10−4 s−1,571

k = 10−3 m−1 and ∆ = 104 m as an illustration, we compute δd/δ∗ = 10−1, indicating a572

dominance of the rotation effects considered in this paper.573
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Appendix A. Details of wave solution577

In this Appendix we provide details of the derivation of the saddle-point approxima-578

tions to the wavepacket in §3.579

A.1. Regime I580

In this section we consider altitudes well below the inertial level, corresponding to the581

scaling (3.28) for z with α = 0, that is, to582

ζ∗ = −k∗Λz
f

= 1 + ZI, with ZI = O(1). (A 1)

As discussed in §3.2, the associated distinguished regime is obtained by considering the583

scaling (3.29) for the wavenumber k. Substituting (3.29) and (A 1) into (3.26), we obtain584

w1 =
iUbhk∗∆

ε
√

2π

k∗
ε

(
ε

k∗∆

)β
e−(y−Jν∗k−1

∗ (1+ν2
∗)
−1/2DI)

2
/(2∆2) (A 2)

×
∫ ∞
−∞

(1 + ZI)

k∗∆Ro

(
(k∗∆)2Ro2 − 1

2ZI + Z2
I

)1/4

e−ε
2β−2(k∗∆)2−2βK2

I /2+iεβ−1k∗(k∗∆)−βK(x−XcI) dKI,

where585

XcI =
J

k∗

√1 + ν2∗

 1 + ZI√
2ZI + Z2

I

− k∗∆Ro√
(k∗∆)2Ro2 − 1

− ν2∗√
1 + ν2∗

DI

 (A 3)

with DI = ln(1 + ZI + (2ZI + Z2
I )1/2) − ln(ζb∗ + (ζ2b∗ − 1)1/2). The expansion of D(ζ)586

results in the term iεβ−1k∗(k∗∆)−βK(x−XcI) in the exponential, in agreement with the587

scaling of D(ζ) in (3.31).588

A distinguished regime is obtained by balancing the arguments of the exponential in589

(A 2), corresponding to the choice β = 1. With this, (A 2) can be integrated directly to590

find591

w1
.
= hf(1 + ZI)

(
(k∗∆)2Ro2 − 1

2ZI + Z2
I

)1/4

e−(y−Jν∗k−1
∗ (1+ν2

∗)
−1/2DI)

2
/(2∆2)e−(x−XcI)

2/(2∆2),

(A 4)
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ignoring the phase factor for simplicity.592

A.2. Regime II593

We now consider the wavepacket asymptotically close to the dominant inertial level,594

that is, for α > 0 in the scaling (3.28) for z. In this case, the form of the expansion of595

D(ζ) in (3.32) depends on the smaller of α and β; therefore, a distinguished regime is596

naturally achieved with β = α, leaving just the value of α to be determined. With α = β,597

D(ζ) expands as598

D(ζ) ∼
(

ε

k∗∆

)α/2√
2(KII + ZII)− ln(ζb +

√
ζ2b − 1)−

(
ε

k∗∆

)α
k∗∆Ro√

(k∗∆)2Ro2 − 1
KII.

(A 5)
Substituting this and the expansions (3.28) and (3.29) for z and k into (3.26) leads to599

w1 =
iUbhk

2
∗∆

21/4ε2
√

2π

(
ε

k∗∆

)α−1/4
(ζ2b − 1)1/4

ζb
e−(y−Jν∗k−1

∗ (1+ν2
∗)
−1/2DII)

2
/(2∆2)

×
∫ ∞
−ZII

1

(KII + ZII)1/4
e−ε

2α−2(k∗∆)2−2αK2
I /2e−iε

α/2−1(k∗∆)−α/2J(1+ν2
∗)

1/2(2(KII+ZII))
1/2

(A 6)

× e
iεα−1KII

(
k∗(k∗∆)−αx+J(k∗∆)−α

(
(1+ν2

∗)
1/2k∗∆Ro((k∗∆)2Ro2−1)

1/2
+ν2
∗(1+ν

2
∗)
−1/2DII

))
dKII,

where DII = − ln(ζb∗ +
√
ζ2b∗ − 1). A distinguished regime is obtained by balancing600

the arguments of the first two exponentials, leading to α = 2/3. The third exponential601

contributes to the same order as the other two when x is suitably rescaled. Substituting602

α = 2/3 into (A 6) we obtain603

w1
.
=

iUbhk
2
∗∆

21/4
√

2πε19/12(k∗∆)5/12
g(y) (A 7)

×
∫ ∞
−∞

1

(KII + ZII)1/4
e
ε−2/3(k∗∆)2/3

(
−K2

II/2−iJ(k∗∆)−1/3
√

1+ν2
∗

√
2(KII+ZII)+iKIIXII

)
dKII,

where g(y) is the Gaussian given in (3.36). Here,604

XII = ε1/3

k∗(k∗∆)−4/3x+ J(k∗∆)−4/3

√1 + ν2∗
k∗∆Ro√

(k∗∆)2Ro2 − 1
+

ν2∗√
1 + ν2∗

DII


(A 8)

is assumed to be O(1), thus indicating that the horizontal scale of the wavepacket in605

Regime II is larger by a factor O(k∗∆)1/3 than its scale ∆ in Regime I.606

We can now apply the saddle point method to approximate (A 7) as607

w1 =
iUbhk

2
∗∆

21/4ε5/4(k∗∆)3/4
q(KIIs)

√
1

p′′(KIIs)
g(y)e(k∗∆)2/3P (KIIs), (A 9)

where608

q(KII) =
1

(KII + ZII)1/4
,

p(KII) = −K
2
II

2
− iJ(k∗∆)−1/3

√
1 + ν2∗

√
2(KII + ZII) + iKIIXII, (A 10)
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andKIIs is the saddle point such that p′(KIIs) = 0, with the prime denoting the derivative.609

The expression of p indicates that there are three saddle points, but only one is accessible610

by a steepest descent path that connects −∞ to ∞. Note that the asymptotics of (3.35)611

for large ZII matches the asymptotics of (A 2) for small ZI. This confirms that there is612

no distinguished regime between Regimes I and II. The matching is also observed in Fig.613

3(c).614

A.3. Regime IIB615

The previous two sections examined the two distinguished regimes of wave propagation.616

Here, we concentrate on the behaviour of the solution in the inertial layer of characteristic617

thickness δ∗ as estimated in (3.14). This defines Regime IIB, a subregime of Regime II618

characterised by α = 1 and thus619

ζ∗ = 1 +

(
ε

k∗∆

)
Z, (A 11)

with Z = O(1). An argument analogous to that used for Regime II in §A.2 then shows620

that the wavenumber should be scaled as621

k = ε−1k∗

(
1 +

ε

k∗∆
K

)
, (A 12)

with K = O(1). In principle we can deduce the form of w1 in this regime from the622

Regime-II result (3.35). However, it is simpler and more illuminating to work out this623

form directly from the definition of w1.624

Introducing the scalings (A 11)–(A 12) into (3.26), we obtain625

w1 =
iUbhk∗(k∗∆)1/4

23/4π1/2ε5/4
g(y)

×
∫ ∞
−∞

e−
K2

2

(K + Z)1/4
e
ε−1/2(k∗∆)1/2

(
−iJ(k∗∆)−1

√
1+ν2

∗

√
2(K+Z)+iKX

)
dK, (A 13)

Since the argument of the dominant exponential is purely imaginary, the stationary phase626

method can be applied in place of the more general saddle-point method. The stationary627

point is readily found as628

Ks =
J2
(
1 + ν2∗

)
2(k∗∆)2X2

− Z. (A 14)

Using this, the stationary phase approximation of (A 13) is found as629

w1 =̇
ihfJ1/2

(
1 + ν2∗

)1/4 (
(k∗∆)2Ro2 − 1

)1/4
(k∗∆)1/2

e−(y−Jν∗k−1
∗ (1+ν2

∗)
−1/2DII)

2
/(2∆2)

× e−(a2/X2−Z)
2
/2 e−i(k∗∆)1/2(J2(1+ν2

∗)/(2(k∗∆)2X)+ZX) (A 15)

where630

X =

k∗(k∗∆)−3/2x− J(k∗∆)−3/2

√1 + ν2∗
(k∗∆)Ro√

(k∗∆)2Ro2 − 1
+

ν2∗√
1 + ν2∗

DII

 ,

(A 16)
a is defined in (3.42), and we have ignored the rapidly varying phase and have set ε = 1.631
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Appendix B. EP flux at the ground632

To obtain the integrated EP flux at the bottom of the domain, we use that633

F tot = 4π2

∫ ∫
F (k) dkdl, (B 1)

where F (k) on the right-hand side is the plane-wave expression for the EP flux in (4.7)634

and the factor 4π2 arises in the transformation of the surface integral into a Fourier635

integral. The form of F (k) is dominated by its first term; further, it follows from (3.16)636

that637

ŵζ ∼ −i
J
√

1 + ν2√
ζ2 − 1

ŵ. (B 2)

The integrated EP flux is therefore approximated as638

F tot =
4π2JΛ

√
ζ2b∗ − 1

fζ2b∗
√

1 + ν2∗

∫∫
|w(k)|2 dkdl =

4π2JΛ
√
ζ2b∗ − 1

fζ2b∗
√

1 + ν2∗

k2∗U
2
bh

2∆4

4π2

π

∆2

=
πJ∆2Λh2f

(
(k∗∆)2Ro2 − 1

)1/2
(1 + ν2∗)

1/2
,

(B 3)

in agreement with (4.18).639
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