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A rigid spherical particle in an acoustic wave field oscillates at the wave period but

has also a mean motion on a longer time scale. The dynamics of this mean motion

is crucial for numerous applications of acoustic microfluidics, including particle ma-

nipulation and flow visualisation. It is controlled by four physical effects: acoustic

(radiation) pressure, streaming, inertia and viscous drag. In this paper, we carry

out a systematic multiscale analysis of the problem in order to assess the relative

importance of these effects depending on the parameters of the system that include

wave amplitude, wavelength, sound speed, sphere radius, and viscosity.

We identify two distinguished regimes characterised by a balance among three of

the four effects, and we derive the equations that govern the mean particle motion

in each regime. This recovers and organises classical results by King, Gor’kov and

Doinikov, clarifies the range of validity of these results, and reveals a new nonlinear

dynamical regime. In this regime, the mean motion of the particle remains intimately

coupled to that of the surrounding fluid, and while viscosity affects the fluid motion,

it plays no part in the acoustic pressure. Simplified equations, valid when only two

physical effects control the particle motion, are also derived. They are used to obtain

sufficient conditions for the particle to behave as a passive tracer of the Lagrangian-

mean fluid motion.
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I. INTRODUCTION

High-frequency acoustic waves are increasingly used to actuate and manipulate flu-

ids at microscales, with applications that include flow generation,1,2 particle collection or

separation,3–9 acoustic levitation,10 and calibration of high-frequency transducers11. As a

result, the field of acoustic microfluidics is in rapid development (see Refs. 12,13 for recent

reviews). Many applications and experiments involve the motion of small, typically spheri-

cal particles, either as objects to be manipulated, or simply as tracers used to visualise the

flow. There is therefore considerable interest in modelling the dynamics of such particles,

especially the mean dynamics that results from averaging over many wave periods. This is

a classical problem that has motivated a great deal of work which we review briefly below.

(see also the review in Ref 14) Most of this work focuses on the calculation of the acoustic

(radiation) pressure acting on particles as a result of wave scattering. This is not the only

physical effect affecting the motion of particles. Acoustic streaming15–17 – the nonlinear

generation of a mean flow by acoustic waves – acts even in the absence of particles and is

the main mechanism exploited in acoustic microfluidics; it clearly affects the dynamics of

particles, though in a way that is sometimes difficult to distinguish from acoustic radiation.18

The inertia of the particles and of the fluid, and the viscous (Stokes) drag caused by the

motion relative to the surrounding fluid are the other two main physical effects.

The relative role of these four effects – acoustic pressure, streaming, inertia and viscous

drag – is the main theme of this paper. Specifically, we explore how, depending on the

parameters of the problems, the mean dynamics of a single spherical rigid particle can be

controlled by different balances among these effects, and we derive the corresponding mean

equations of motion. We do so by applying a systematic multiscale approach: taking the

standard linear acoustics hypothesis of small-amplitude waves, characterised by an acoustic

Mach number ϵ ≪ 1, we consider possible distinguished scalings of the other parameters

in the problem, primarily viscosity measured by the ratio δ/a of the Stokes boundary-layer

thickness to the sphere radius. We apply multiscale and matched-asymptotics methods to

obtain asymptotic equations governing the motion over long time scales. Crucially, this

requires (i) to consider the fully coupled fluid-particle system, recognising that a reduction

to an ordinary differential equation for the particle alone is possible only in certain parameter

regimes; and (ii) to take into account explicitly the mean displacements of the particle. This
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is in contrast with much of previous work which, as mentioned, concentrates on acoustic

pressure and typically assumes that the mean particle position can be taken as frozen.

In the classic work by King 19 and Gor’kov 20 on acoustically-driven particles in inviscid

fluids (with assumptions of, respectively, axisymmetry and long wavelength ka ≪ 1, with k

the wavelength), explicit expressions are derived for the acoustic pressure in this way; the

effect of the fluid motion is subsequently taken into account in a somewhat ad hoc manner by

including an added mass effect in Newton’s second law for the particle. Our treatment shows

this to be valid for sufficiently small viscosity and makes precise how small the viscosity needs

to be. The case of a viscous fluid has been considered in many papers,21–23 culminating in

the work of Doinikov24–26 who provides complete expressions for the acoustic pressure in an

axisymmetric field for arbitrary viscosity and wavelength. Simplified expressions valid for

ka ≪ 1 and arbitrary wave fields have recently been obtained by Settnes and Bruus 27 (see

also Ref. 18 and references therein). In this viscous case, a closed equation of motion for the

sphere can be inferred from the acoustic force by assuming that the inertia of the particle and

surrounding fluid is negligible. Again, our treatment shows this to be a valid approximation

under conditions that we make explicit. More importantly, our analysis reveals a new regime

(termed Regime II below) in which the fluid motion driven by the particle is both crucial for

the particle dynamics and determined by the full (viscous) Navier–Stokes equations instead

of the simple potential solution relevant in the purely inviscid approximation. In this regime,

the particle and fluid motion are completely coupled, and no reduction to a single ordinary

differential equation is possible.

Much of the earlier work on acoustic pressure was motivated by applications very different

from those arising today from developments in acoustic microfluidics. The focus of this paper

reflects these developments: in particular, we pay attention to the case of particles with the

same density as the fluid. While this case is ‘of no interest for practice’26 when dealing with,

say, dust particles or water drops in air, it is highly relevant in microfluidics applications

where the particle density is often selected to avoid buoyancy effects. We examine the

conditions that need to be satisfied for such particles to follow fluid elements and hence act

as genuinely passive tracers. This is important in view of the widespread use of particles for

this purpose in acoustic microfluidics.

The paper is structured as follows. Section II introduces the governing equations and

relevant non-dimensional parameters. Based on this, and under the assumption ka = O(1)
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(which includes ka ≪ 1), it gives a heuristic argument for the existence of two distinguished

asymptotic regimes in which three of the four physical effects affecting particle motion

balance. These two regimes are considered in detail in sections III and IV. There we apply

systematically multiscale asymptotics to derive the equations governing the mean dynamics

in each regime. These equations can be further simplified in several intermediate regimes

in which only two of the four physical effects come into play. These regimes are of great

practical importance; the relevant equations are derived in section V. The paper concludes

in section VI with a brief summary, a discussion of the relevance of the results to examples

of acoustic microfluidics experiments, and pointers to further work, including on the case

ka ≫ 1. Throughout, we emphasise the systematic derivation of mean equations of motion

over specific expressions for the acoustic-pressure terms. We refer the reader to earlier work

for these and point out the approximations that can be made consistently in each of the

regimes we analyse. We note that complete expressions for the acoustic pressure have been

obtained for axisymmetric wave fields (Ref. 26 and references therein) and for general wave

fields provided that ka ≪ 1 (Refs. 18,27 and references therein). Our results have the same

range of validity.

II. FORMULATION

A. Dimensionless parameters and scaling

We study the mean dynamics of a rigid sphere in an axisymmetric acoustic wave field. For

simplicity we neglect the effect of heat conduction28,29. The problem is then characterised

by 8 parameters: the fluid properties determine the equilibrium density ρ(0), sound speed c

and shear and bulk viscosities η and ξ; the particle is characterised by its density ρp and

radius a; the incident wave by a frequency ω and a velocity amplitude v′. See Figure 1 for an

illustration. The π-theorem of dimensional analysis yields 5 dimensionless parameters: η/ξ,

λ = ρ(0)/ρp, ϵ = v′/c, δ/a, where δ =
√

2η/(ρ(0)ω) =
√

2ν/ω is the Stokes boundary-layer

thickness (e.g., Ref. 30, section 5.13), and ka, where k = ω/c is wavenumber.

Since we are dealing with acoustic waves, we naturally assume that the acoustic Mach

number ϵ is small: ϵ ≪ 1. Different dynamical regimes then emerge depending on the size

of the other dimensionless parameters relative to ϵ. We assume that both η/ξ and λ are
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FIG. 1. Parameters controlling the motion of a spherical particle in an acoustic field.

O(1) as is relevant to most applications. This leaves the two parameters δ/a and ka which

we relate to ϵ according to

δ/a = O(ϵα) and ka = O(ϵγ). (1)

The exponents α and γ introduced in (1) control the nature of the dynamics. Their physical

interpretation is clear: increasing α decreases the strength of the viscous effects, while

increasing γ increases the wavelength.

The problem at hand involves two distinct time scales: the wave time scale ω−1 and a

slower time scale characterising the mean motion of the sphere. To capture this, we introduce

a slow time variable T , related to the fast (wave) time t by

T = ϵβt. (2)

To apply systematic asymptotic methods, the exponent β should be related to α and γ.

This requires to consider to the balance of terms in the equations governing the dynamics

of the coupled fluid-particle system.

B. Basic equations

The fluid is governed by the compressible Navier–Stokes equations

∂

∂t
(ρv) = ∇ · (σ − ρv ⊗ v), (3a)

∂ρ

∂t
+∇ · (ρv) = 0, (3b)

with σij = −pδij + η

(

∂vi
∂xj

+
∂vj
∂xi

−
2

3

∂vk
∂xk

δij

)

+ ξ
∂vk
∂xk

δij , (3c)

5



where ρ is the fluid density, v its velocity, σ is the stress tensor, and p is the pressure.

Subscripts denote components and Einstein’s summation convention is used. Here we neglect

thermodynamic effects and assume that the fluid is barotropic (e.g., homentropic) so that

Eqs. (3) are supplemented by an equation of state p = p(ρ). The boundary conditions are

given by the no-slip boundary condition at the surface of the particle

v(x, t) =
dX

dt
for x ∈ SX , (4)

where x is the position vector, X the position of the centre of the particle, and SX denotes

the sphere of radius a centred at X , and by a prescribed incident acoustic field at infinity

v(x, t) ∼ vincident as x → ∞. (5)

The motion of the particle is governed by Newton’s second law written as

M
d2X

dt2
=

∫

SX

σ · n ds, (6)

where M = 4πρpa3/3 is the mass of the particle and n denotes the outer normal. Since the

sphere is symmetric and placed in an axisymmetric wave field, its motion is one dimensional

along the axis of symmetry of the wave field; we choose this direction to be the x axis, with

unit vector ex, so that X = Xex. We do not take the spin of the sphere into account since

none is induced by an axisymmetric wave field. Note that the assumption of an axisymmetric

wave can be relaxed when ka ≪ 1 since an arbitrary wave field is can then be regarded as

locally planar. In view of the practical importance of this approximation, satisfied in the

majority of applications, we write our results, whenever possible, in a vector form that can

be employed for general wave fields when ka ≪ 1.

C. Regimes

Our focus is on the mean motion of the particle, driven by the force on the right-hand

side of (6) averaged over a wave period. We denote this average by ⟨·⟩, so that ⟨∂t·⟩ = 0.

Considering an expansion of all the variables in the form

v = ϵv(1) + ϵ2v(2) + · · · , (7a)

x = X(0) + ϵX (1) + ϵ2X(2) + · · · , (7b)
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where X(0) captures the mean motion of the particle, we write the averaged force as

⟨F ⟩ =
∫

S
X

(0)

〈

σ(2)
〉

· nds−
∫

S
X

(0)

ρ(0)
〈

v(1) ⊗ v(1)
〉

· nds +O(ϵ3). (8)

Note that the integrations are over the surface of the sphere centred at X(0) which moves

only over the slow time scale. The second term on the right-hand side, however, arises from

the integration of σ(1) over the rapidly moving surface S
X(0)+ϵX(1) (see, e.g., Ref. 26 for a

derivation).

The force in (8) contains two distinct physical effects. The first is viscous drag which

relaxes the particle’s velocity to the velocity of the surrounding fluid. It is not obvious

what the relevant fluid velocity is but it certainly includes the streaming velocity that is

generated by dissipation and nonlinearity even in the absence of a particle17,21,31. The second

effect is the radiation pressure associated with the scattered wave. With this in mind, we

can postulate a heuristic form for the equation governing the mean motion of the particle,

estimate the order of magnitudes of its terms, and find the combinations of α, β and γ

that lead to distinguished limits as ϵ → 0. These limits are crucial since the corresponding

regimes include all the physical mechanisms that can possibly have a leading-order effect

simultaneously. Our aim is to derive mean equations that apply to these regimes; simpler

models, valid in intermediate regimes, can then be deduced straightforwardly by neglecting

certain terms.

Heuristically, we can expect the mean motion of the particle to be governed by an equation

of the form
M̃Ẍ

(0)
+6πaη(Ẋ

(0) − ṽ) = F ap,

relative order: ϵ2β ϵ2α+β ϵ2α+2 ϵ2
(9)

where M̃ is a mass, expected to be the mass of the particle plus a possible added mass

stemming from fluid motion, ṽ is a streaming velocity, and F ap is the acoustic-pressure

force. Here and henceforth, the overdot denotes time derivative with respect to the slow

time T . Below each term in (9) we indicate its relative order of magnitude, based on

the dimensional estimates ρpa3k−1T−2, aηk−1T−1, aηv′2c−1 and ρ(0)ka3v′2. These assume:

typical particle displacements X(0) of size O(k−1); a streaming velocity ṽ = O(v′2/c), which

holds provided that the amplitude of the waves varies on an ‘outer scale’ that is not too

dissimilar to k−1 (e.g., Refs. 31,32); and the scaling ka3v′2 for the surface integrals in (8).

The latter scaling follows from applying the divergence theorem and the assumption that
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ka = O(1), i.e., γ ≥ 0 so that the spatial derivatives scale like k rather than a−1; it is

confirmed by explicit computations of the acoustic radiation force, e.g. in Ref. 20. For now,

we focus on the case γ ≥ 0 and leave a brief analysis of the case γ < 0 for Section VD.

Distinguished limits are obtained by selecting α and β to balance as many of the 4 terms

in (9) as possible. It is easy to see that 3 terms at most can be involved in any dominant

balance. This yields four possibilities:

1. The particle’s inertia is negligible, leading to the condition 2α + β = 2α + 2 = 2,

that is, α = 0 and β = 2, for the balance of the remaining terms. We refer to the

corresponding regime as Regime I.

2. The streaming velocity ṽ is negligible, leading to 2β = 2α + β = 2, that is, α = 1/2

and β = 1. We refer to this as Regime II.

3. The particle’s viscous drag is negligible. Balancing the remaining terms leads to α = 0

and β = 1 but also to an O(ϵ) viscous drag, thus much larger than the other terms,

inconsistent with our assumption. There is, therefore, no distinguished limit in which

the viscous drag is negligible.

4. Acoustic pressure is negligible. This leads to α = 1 and β = 2 and again to an

inconsistency: there is no distinguished limit with negligible acoustic pressure.

We derive the average equations holding in Regimes I and II in sections III and IV. In-

termediate regimes, in which only two of the terms in (9) enter the dominant balance, are

examined in section V. We emphasise that these intermediate regimes, though they may

formally correspond to values of α and β different from those in Regimes I and II, can be

deduced as limiting cases. For instance, a balance between the particle’s inertia and the

acoustic pressure, obtained for β = 1 and any value α > 1/2, is deduced from Regime II by

neglecting viscous drag.

III. REGIME I

We first consider the distinguished limit in which the particle’s inertia is negligible, cor-

responding to α = 0 and β = 2. Because viscosity is an O(1) effect in this case, the averaged
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force (8) is given by the complete expression computed by Doinikov 26 . Although he as-

sumed that the particle does not have a slow motion, including this motion requires only

a straightforward modification of his calculation because of the large time-scale separation

implied by β = 2; the present section is therefore largely a brief review of Ref. 26 to which

the reader is referred for details.

A. Wave dynamics

All dynamical variables are expanded in powers of ϵ according to (7) and regarded as

functions of both times t and T , except for the constant ρ(0) and the t-independent X(0).

We assume that X(0) captures the entirety of the slow motion so that ⟨X(j)⟩ = 0 for j ≥ 1.

Introducing the expansion into the governing equations (3)–(6) yields a linear viscous wave

equations for v(1), p(1) and ρ(1) coupled with the equations

v(1) = ∂tX
(1) for x ∈ S

X(0) and M∂tX
(1) =

∫

S
X(0)

σ(1) · n ds (10)

governing the particle motion and its interaction with the fluid. The solution for an ax-

isymmetric flow is best written using spherical polar coordinates centred at X(0). With θ

denoting the angle about the axis ex, the potential of the incident part of the wave field can

be written as

φi = e−iωt
∞
∑

n=0

An(X
(0))jn(kr)Pn(cos θ), (11)

where r = |x − X(0)|, jn denotes the spherical Bessel function of order n, Pn denotes the

Legendre polynomial of degree n,

k = ω/(c2 − iω(ξ + 4η/3)/ρ(0))1/2 (12)

is the wavenumber, and the real part is implied. The amplitudes An are determined by

the prescription of the incident wave as r → ∞. The scattered part of the wave field is

determined by a potential φs and streamfunction ψs such that v
(1)
s = ∇φs + ∇ × (eϕψs),

with eϕ the azimuthal unit vector of the spherical coordinate system; these are given by

φs = e−iωt
∞
∑

n=0

αnAn(X
(0))hn(kr)Pn(cos θ) (13)

and ψs = e−iωt
∞
∑

n=0

βnAn(X
(0))hn((1 + i)r/δ)P 1

n(cos θ), (14)
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where hn is the spherical Hankel function and P 1
n the associated Legendre polynomial.

Doinikov 26 gives explicit expressions for the constants αn and βn.

B. Mean dynamics

Continuing the expansion of (3) to O(ϵ2) leads to the equations

ρ(0)∂tv
(2) + ∂t

(

ρ(1)v(1)
)

= ∇ ·
(

σ(2) − ρ(0)v(1) ⊗ v(1)
)

, (15a)

∂tρ
(2) = −∇ ·

(

ρ(0)v(2) + ρ(1)v(1)
)

, (15b)

which become

∇ ·
〈

σ(2)
〉

= ρ(0)∇ ·
〈

v(1) ⊗ v(1)
〉

, (16a)

ρ(0)∇ ·
〈

v(2)
〉

= −∇ ·
〈

ρ(1)v(1)
〉

, (16b)

upon averaging. Averaging the boundary condition (4) gives

〈

v(2)
〉

+
〈

X(1) ·∇v(1)
〉

= Ẋ
(0)

for x ∈ S
X(0). (17)

The left-hand side of (17) can be recognised as a Lagrangian mean velocity summing Eulerian

mean velocity and Stokes drift33: indeed, in view of (10), X(1) is both the particle and fluid

displacement. The final equation for the mean flow is provided by the average of (6) to order

O(ϵ2). With β = 2, the slow acceleration of the particle is ϵ4Ẍ
(0)

and does not appear at

this order, leaving the dominant balance
∫

S
X(0)

〈

σ(2)
〉

· n ds−
∫

S
X(0)

ρ(0)
〈

v(1) ⊗ v(1)
〉

· n ds = 0. (18)

The linear problem (16)–(17) for
〈

v(2)
〉

and
〈

p(2)
〉

was solved explicitly by Doinikov 26 with

a vanishing right-hand side for (17); the difference is minor and the effect of the extra term

is easy to track down. Introducing the result into (18) leads to the final equation for the

particle motion

6πηa
(

Ẋ
(0) − ṽ

)

= F ap, (19)

which has the form expected in our discussion of distinguished regimes in section II (cf. (9)).

The velocity ṽ in (19) is given by

ṽ =
1

4πa2

∫

S
X(0)

(

〈

v
(2)
i

〉

+

〈

X(1)
r

∂v(1)

∂r

〉)

ds, (20)
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and can be interpreted as a form of Lagrangian velocity averaged over the surface of the

particle. Here, we have used axisymmetry to express the Stokes drift in terms of the r-

component of the particle displacement X(1)
r = X(1) cos θ. Note that while the second term

in (20) is the Stokes drift of fluid particles lying on the sphere, the first only includes the

Eulerian-mean velocity associated with the incident part of the wave; as a result, ṽ differs

from the full averaged Lagrangian velocity of these fluid particles. One feature of ṽ is its

independence of the scattered Eulerian mean dynamics; another, discussed below, is its

scaling for large and small viscosity.

The acoustic pressure in (19) is given by

F ap = −
3πρ(0)

2

∞
∑

n=0

n+ 1

(2n+ 1)(2n+ 3)

(

EnAnA
∗

n+1 + E∗

nA
∗

nAn+1

)

ex. (21)

It depends on the wave amplitudes An and on the coefficients En, which are slight modifi-

cations of the Dn computed by Doinikov 26 (his Eq. (5.6)). Specifically, our En are deduced

from the Dn by setting the coefficients S9n to zero and omitting the terms proportional to

the functions G(l)
n , L(l)

n , K(l)
n from the coefficients S1n to S8n. This modification is made to

include the Stokes-drift term in the velocity ṽ whereas Doinikov 26 includes it in his acoustic

force (see also Ref. 18). We find our choice convenient for two reasons: (i) all the terms in

F ap depend on the scattered wave in the sense that F ap → 0 as αn, βn → 0; and (ii) ηṽ

and F ap have different behaviours in the limits of large and small viscosity. We discuss (ii)

further in section VA.

To summarise, the dynamics of the sphere in Regime I is controlled by a balance between

a Stokes drag towards the streaming velocity ṽ and the acoustic pressure. We next illustrate

the transient dynamics this leads to with the familiar example of a plane standing wave.

C. Standing wave

For a plane standing wave, the potential of the incident wave can be expressed as

φi = A cos(kr cos θ + kX(0))e−iωt = e−iωt
∞
∑

n=0

Anjn(kr)Pn(cos θ), (22)

where An = 1
2A(2n + 1)in[eikX

(0)
+ (−1)ne−ikX(0)

]. Note that the dependence of the An on

X(0) couples the wave field on the particle to the mean position X(0) of the particle. For

simplicity, we consider the particle motion in the particular case λ = 1 and in the long
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wavelength limit |ka| ≪ 1, |kδ| ≪ 1. In this limit, it can be shown using the asymptotics of

Bessel functions34 that the coefficients En in (21) satisfy E0 = 2(ka)3/9 ≫ En, n ≥ 1. As a

result, the acoustic pressure reduces to

F ap = −
πρ(0)|A|2(ka)3

3
sin(2kX(0)) ex. (23)

Similarly, ṽ reduces to the Lagrangian-mean velocity of the incident wave (see section VD),

which vanishes for standing waves. The position of the sphere therefore obeys the equation

Ẋ(0) = −
ρ(0)|A|2 sin(2kX(0))(ka)3

18ηa
, (24)

with solution

X(0) = k−1 tan−1
(

Ce−t/τ
)

, where τ =
9η

ρ(0)|A|2k4a2
(25)

and C is determined by the initial condition. This shows that the sphere converges expo-

nentially towards the nodes of the standing waves over a time scale τ .

IV. REGIME II

Regime II is characterised by α = 1/2, corresponding to a weaker dissipation than in

Regime I, with δ/a = O(ϵ1/2) rather than O(1). As a result, the acoustic pressure on the

particle is balanced by a combination of viscous drag and inertia, while the streaming velocity

ṽ is negligible. The mean time scale is short compared to that in Regime I, O(ϵ−1) rather

O(ϵ−2); crucially, this leads to mean velocities, both of the particle and of the surrounding

fluid, that are comparable to the wave velocities.

These large mean velocities, and hence mean displacements necessitate to introduce co-

ordinates that follow the motion of the particle. Defining r = x−X , we rewrite the Navier–

Stokes equations (3b)–(3c) in these coordinates, noting that ∇ .→ ∇r and ∂t .→ ∂t − Ẋ ·∇r

to obtain

∂

∂t
(ρv)− Ẋ ·∇(ρv) +∇ · (ρv ⊗ v) = −∇p + η(∇2v +

1

3
∇∇ · v) + ξ∇∇ · v, (26a)

∂ρ

∂t
− Ẋ ·∇ρ+∇ · (ρv) = 0, (26b)

where we have omitted the subscripts r from ∇r for convenience.
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The weak viscosity of Regime II makes it possible to use a boundary-layer approach for

both the wave and mean part of the dynamics. The boundary-layer thickness is δ = O(ϵ1/2a)

so that all fields need to be expanded in powers of ϵ1/2 according to

v = ϵv(1) + ϵ3/2v(3/2) + ϵ2v(2) + · · · , (27a)

ρ = ρ(0) + ϵρ(1) + ϵ3/2ρ(3/2) + ϵ2ρ(2) + · · · , (27b)

p = p(0) + ϵp(1) + ϵ3/2p(3/2) + ϵ2p(2) + · · · , (27c)

X = X(0) + ϵX (1) + ϵ3/2X(3/2) + ϵ2X(2) + · · · , (27d)

where ρ(0) and p(0) are constants. We anticipate that X (0) depends on the slow time T = ϵt

only, but all the other variables depend on both t and T . We emphasise that v(1), ρ(1) and

p(1) have both oscillatory and mean contributions: we separate these two contributions using

the notation

v(1) = v̄(1) + v′(1), with
〈

v′(1)
〉

= 0.

A. Wave dynamics

We now obtain the form of the leading-order wave fields. Substituting (27) into (26) and

the equation of state, and subtracting the mean contribution, we find the leading-order wave

equations

ρ(0)
∂v′(1)

∂t
= −∇p′(1), (28a)

∂ρ′(1)

∂t
= −ρ(0)∇ · v′(1), (28b)

p′(1) = c2ρ′(1), (28c)

with boundary conditions

v′(1) = ∂tX
′(1) for r ∈ S0, (29a)

v′(1) ∼ vincident as r → ∞, (29b)

where S0 denotes the sphere centred at origin. The equation for the sphere becomes

M∂ttX
′(1) = −

∫

S0

p′(1)nds. (30)
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Eqs. (28) are the familiar equations for inviscid acoustic waves which can be solved in terms

of a potential. As is standard, these equations are solved by imposing only the normal

component of the boundary condition (29a). The potential solution so obtained is valid

to leading order for |r − a| ≫ δ only. Viscous effects are important in a boundary layer

of thickness δ in which the velocity has a rotational contribution. The resulting velocity

tangential to the sphere varies rapidly so as to both match the potential solution and satisfy

the no-slip condition. It turns out that the details of the solution in the boundary layer are

unimportant for the leading-order dynamics of the sphere in Regime II; in particular, the

effect of boundary streaming is O(ϵ2) like that of interior streaming15 and both contribute

to the streaming velocity ṽ whose drag is O(ϵ5/2) hence negligible.

The solution for |r − a| ≫ δ is given, as in Regime I, by the sum φi + φs of the incident

and scattered wave, with

φi = e−iωt
∞
∑

n=0

Anjn(k0r)Pn(cos θ). (31)

In this expression, the functions An(X) which appear in the far-field condition (29b) when

this is written in terms of r are approximated as An(X
(0)). The correction involving X(1) ·

∇A(X(0)) is O(ϵ2) and negligible. Note that the wavenumber can be taken as the inviscid

approximation k0 = ω/c, assuming implicitly that the far-field condition is imposed for some

r not so large that the viscous decay (on scales given by (ℑk)−1 ∼ k−1
0 (k0δ)2 = O(k−1

0 ϵ−1)

for k0δ ≪ 1, see (12)) matter. This damping introduces an outer scale that can modify the

streaming, which is further discussed in §VI. The potential of the scattered wave is given

by

φs = e−iωt
∞
∑

n=0

αnAnhn(kr)Pn(cos θ), (32)

where the coefficients are obtained from (28)–(30) as

α0 = −
j1(κ)

h1(κ)
, α1 =

λj1(κ)− xj′1(κ)

κh′

1(κ)− λh1(κ)
, αn = −

j′n(κ)

h′

n(κ)
for n > 1, (33)

with κ = k0a. This result was first obtained by King19.
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B. Mean dynamics

We now turn to the mean dynamics. Time averaging the transformed Navier–Stokes

equations (26), we obtain

ϵ

〈

∂ρv

∂T

〉

−
〈

dX

dt
·∇(ρv)

〉

+∇ · ⟨ρv ⊗ v⟩

= −∇p̄ + η

(

∇2v̄ +
1

3
∇(∇ · v̄)

)

+ ξ∇(∇ · v̄), (34a)

ϵ
∂ρ̄

∂T
−
〈

dX

dt
·∇ρ

〉

+∇ · ⟨ρv⟩ = 0, (34b)

where d/dt = ∂t + ϵ∂T . The boundary condition is given by

v̄ = Ẋ
(0)

for r ∈ S0, (35)

and an prescribed outer boundary condition depending on the specific application.

Corresponding to the wave solution, the mean flow has a boundary layer of thickness δ

around the particle. We therefore analyse the mean equations (34) separately in an outer

region with r − a ≫ δ and in a boundary layer with r − a = O(δ).

1. Outer region

Substituting (27) into the mean mass-conservation equation (34b) gives

O(ϵ) : ∇ · v̄(1) = 0, (36a)

O(ϵ3/2) : ∇ · v̄(3/2) = 0, (36b)

which imply that both v̄(1) and v̄(3/2) are incompressible.

Similarly, the mean momentum equation (34a) gives

O(ϵ) : 0 = −∇p̄(1), (37a)

O(ϵ3/2) : 0 = −∇p̄(3/2), (37b)

O(ϵ2) : ρ(0)
∂v̄(1)

∂T
− ρ(0)Ẋ

(0) ·∇v̄(1) − ρ(0)
〈

∂X ′(1)

∂t
·∇v′(1)

〉

+∇ ·
〈

ρ(0)v′(1) ⊗ v′(1)
〉

+∇ ·
(

ρ(0)v̄(1) ⊗ v̄(1)
)

= −∇p̄(2) + η̂∇2v̄(1),

(37c)

where (36a) is used and we have defined η̂ = η/ϵ = O(1) consistent with the assumption that

δ = O(ϵ1/2). Assuming that p̄(1) and p̄(3/2) tend to constants as |r| → ∞, we conclude that
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p̄(1) and p̄(3/2) are constant in the outer region. The key equation is (37c) which describes

the mean dynamics in the outer region; its boundary conditions are obtained by considering

the boundary layer.

2. Boundary layer

This region is defined by R = (r − a)/δ = O(1). Denoting the dependent variables

regarded as functions of R and θ by capital letters, we obtain from the mass conservation

(34b) that

O(ϵ1/2) : ρ(0)
∂V̄ (1)

r

∂R
= 0, (38a)

O(ϵ) : 2V̄ (1)
r +

1

sin θ

∂

∂θ
(sin θ V̄ (1)

θ ) +
∂V̄ (3/2)

r

∂R
= 0. (38b)

Eq. (38a) indicates that V̄ (1)
r is independent of R across the boundary layer: V̄ (1)

r (R, θ) =

v̄r(1)(r = a, θ). The mean momentum conservation (34a) gives

O(ϵ1/2) : 0 = −
∂P̄ (1)

∂R
, (39a)

O(ϵ) : 0 = −
∂P̄ (3/2)

∂R
, (39b)

0 = −
1

a

∂P̄ (1)

∂θ
+

η̂

a2
∂2V̄ (1)

θ

∂R2
, (39c)

when (38a) is used. We conclude from (39a) and (39b) that P̄ (1) and P̄ (3/2) are constant

across the boundary layer, so that p̄(1) and p̄(3/2) are constant throughout the fluid. It then

follows from (39c) that ∂2V̄ (1)
θ /∂R2 = 0, hence

V̄ (1)
θ = f1(θ)R + f2(θ), (40)

where the functions f1 and f2 remain to be determined. Matching with the outer solution

gives that f1 = a∂rv̄(1/2)(r = a, θ) = 0 (since v̄ = O(ϵ)), and f2 = v̄(1)θ (r = a, θ). This

implies that V̄
(1)

is independent of R across the boundary layer. As a result, the outer

velocity satisfies the simple boundary condition

v̄(1)(r = a, θ) = V̄
(1)
(r = a, θ) = Ẋ

(0)
. (41)
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The momentum equation obtained at the next order, O(ϵ3/2), can be reduced using (38a)

and (38b) to

ρ(0)

a

〈

(V ′(1)φ
r −

∂X ′(1)

∂t
cos θ)

∂V ′(1)ψ
θ

∂R

〉

+
ρ(0)

a

(

V̄ (1)
r − Ẋ(0) cos θ

) ∂V̄ (1)
θ

∂R

= −
1

a

∂P̄ (3/2)

∂θ
+

η̂

a2
∂2V̄ (3/2)

θ

∂R2
+

2η̂

a2
∂V̄ (1)

θ

∂R
, (42a)

0 = −
1

a

∂P̄ (2)

∂R
+

η̂

a2
∂2V̄ (3/2)

r

∂R2
+

2η̂

a2
∂V̄ (1)

r

∂R
, (42b)

where the mass conservation (38) and wave solutions have been used. Here V ′(1)φ
r and V ′(1)ψ

θ

denote potential and rotational contributions to the wave velocity V ′(1). Since, as discussed

above, the potential part satisfies the no-normal flow condition, the term involving these

contributions vanishes. Using the constancy of P (3/2) and (41) reduces (42) to

0 = η̂
∂2V̄ (3/2)

θ

∂R2
, (43a)

0 = −
1

a

∂P̄ (2)

∂R
+

η̂

a2
∂2V̄ (3/2)

r

∂R2
. (43b)

Therefore, V̄ (3/2)
θ = f3(θ)R + f4(θ), where f3 and f4 are obtained by matching as f3 =

a∂r v̄
(1)
θ (r = a, θ) and f4 = v̄(3/2)θ (r = a, θ). Taking the R derivative of (38b) yields

∂2V̄ (3/2)
r /∂R2 = 0, which implies V̄ (3/2)

r = a∂rv̄
(1)
r (r = a, θ)R+v̄(3/2)r (r = a, θ) after matching.

Therefore, (43b) reduces to ∂P̄ (2)/∂R = 0 so that p̄(2) is R-independent in the boundary

layer.

The above calculation provides us with two important pieces of information: (i) the O(ϵ)

velocity and O(ϵ2) pressure are R-independent; and (ii) the O(ϵ3/2) velocity depends linearly

on R. From this, we conclude that the stress is constant across the boundary layer up to

o(ϵ2) corrections. As a result, the leading-order particle motion, which depends only on the

O(ϵ2) stress, can be computed from the outer solution alone.

3. Governing equations

The previous two sections conclude that the mean dynamics is controlled by the incompressible-

fluid momentum equation (37c) and the mean particle equation

MẌ
(0)

= −
∫

S0

p̄(2)n ds+

∫

S0

τ̄ (2) · n ds, (44)
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that arises when (27) is introduced into (6). These two equations are coupled through the

mean stress tensor τ̄ , defined by

τ̄ (2)rr = −2η̂
∂v̄(1)r

∂r
,

τ̄ (2)θθ = −2η̂

(

1

r

∂v̄(1)θ

∂θ
+

v̄(1)r

r

)

,

τ̄ (2)rθ = τ̄ (2)θr = −η̂

(

r
∂

∂r

(

v̄(1)θ

r

)

+
1

r

∂v̄(1)r

∂θ

)

,

(45)

and through the no-slip condition (41) satisfied by v̄(1). We now recast these equations in a

simpler form and discuss the physical mechanism they describe.

The effect of the waves on the particle is implicit in (44): it arises through changes in p̄(2)

and v̄(1) that are induced by the presence of wave terms in the momentum equation (37c).

We can make the effect of the waves explicit in (44) by writing these terms using the wave

potential in the outer region20 to obtain

∇ ·
〈

v′(1) ⊗ v′(1)
〉

= ∇

〈

1

2

(

∇φ′(1)
)2 −

1

2c2

(

∂φ′(1)

∂t

)2
〉

, (46a)

〈

∂X ′(1)

∂t
·∇v′(1)

〉

= ∇

〈

∂X ′(1)

∂t
·∇φ′(1)

〉

. (46b)

It is therefore natural to redefine pressure as

p̃(2) = p̄(2) + ρ(0)
〈

1

2

(

∇φ′(1)
)2 −

1

2c2

(

∂φ′(1)

∂t

)2
〉

− ρ(0)
〈

∂X ′(1)

∂t
·∇φ′(1)

〉

, (47)

leading to the simpler momentum equation

ρ(0)
∂v̄(1)

∂T
− ρ(0)Ẋ

(0) ·∇v̄(1) + ρ(0)∇ ·
(

v̄(1) ⊗ v̄(1)
)

= −∇p̃(2) + η̂∇2v̄(1). (48)

The advection term ρ(0)Ẋ
(0) ·∇v̄(1) in the above equation can be eliminated by using the

spatial coordinates

x̃ = r +X(0) = x+O(ϵ), (49)

which can be identified with the original, fixed-frame coordinates x, as the second equality

indicates. This reduces (48) to

ρ(0)
∂v̄(1)

∂T
+ ρ(0)∇ ·

(

v̄(1) ⊗ v̄(1)
)

= −∇p̃(2) + η̂∇2v̄(1), (50)
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where the spatial derivatives are with respect to x̃. Eq. (50), together with the incompress-

ibility condition

∇ · v̄(1) = 0, (51)

are the usual incompressible Navier–Stokes equations. At the same time, equation (44) for

the sphere becomes

MẌ
(0)

= −
∫

S
X(0)

p̃(2)nds+

∫

S
X(0)

τ̄ · n ds+ F inv, (52)

where

F inv = ρ(0)
∫

S
X

(0)

{〈

1

2

(

∇φ′(1)
)2 −

1

2c2

(

∂φ′(1)

∂t

)2
〉

−

〈

∂X ′(1)

∂t
·∇φ′(1)

〉}

n ds (53)

is the inviscid acoustic pressure. The boundary conditions for (50) become

v̄(1) = Ẋ
(0)

for x̃ ∈ S
X(0) , (54)

together with a condition on the outer of the fluid region, at infinity for instance. The

latter boundary condition is naturally expressed in terms of the Lagrangian-mean velocity

which, in particular, vanishes on the surface of oscillating wavemakers35. This velocity can

be identified with v̄(1), however, since the Stokes drift is O(ϵ2) hence negligible.

The force in (53) is that obtained for a purely inviscid fluid and used, e.g., by Gor’kov 20 .

Explicit expressions for this force in terms of the coefficients An in the expansion (31) of the

incident wave are given in Refs. 19,26 and, in the long-wave limit ka ≪ 1, in Ref. 20. Note

that Gor’kov uses an integration over a large sphere rather over the particle itself, replacing

∂tX
′(1) by ∇φ′(1) and taking advantage of the divergence-free property of the mean inviscid

stress tensor (the integrand). In our case, because the mean flow is affected by viscosity and

acts on the particle through the first two terms on the right-hand side of (52), this technique

is not as useful.

To summarise, in Regime II, the slow, averaged dynamics is controlled by the coupled

system (50)–(54). In this system, viscosity enters only in the Navier–Stokes equation govern-

ing the fluid motion and not in the acoustic pressure. This is a complex, nonlinear system

involving a moving boundary, but a classical one, describing the motion of an externally

forced spherical particle in incompressible viscous fluid. It has been studied extensively,
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both theoretically (e.g., to find approximate solutions36,37) and numerically38–40. The speci-

ficity of our problem is the form of the external force, namely the inviscid acoustic pressure

which can be obtained solely from the potential wave solution.

C. Example: plane standing wave

To illustrate the difference between Regimes I and II, we consider again a standing wave

in the limit |ka| ≪ 1, |kδ| ≪ 1 for λ = 1. The acoustic pressure is then

F inv = −
πρ(0)|A|2(ka)3

3
sin(2kX(0)) ex (55)

and identical to that of Regime I19,26. To obtain a simple closed-form solution, we restrict

our attention to the Basset limit36 where Ẋ
(0)

is small enough that the advection terms can

be treated perturbatively. This reduces (50)–(54) to the single equation

(M +M ′)Ẍ(0) = −DX(0) −KẊ(0) −B

T
∫

0

Ẍ(0)(T − τ) τ−1/2dτ, (56)

where we have linearised the acoustic pressure (55) using that X(0) ≪ 1. The coefficients

M ′ =
2π

3
a3ρ(0), D =

2

3
πρ(0)|A|2k4

0a
3, K = 6πη̂a, B = 6a2(πρ(0)η̂)1/2 (57)

can be associated with distinct physical effects: added mass, acoustic pressure, Stokes drag,

and the (history-dependent) Basset force.

We solve (56) with X(0)(0) = X and Ẋ(0) = 0 using Laplace transform (see Appendix A

for details). The solution is the sum of exponentially damped oscillations and a continuous-

spectrum contribution. This controls the T ≫ 1 asymptotics, given by

X(0) ∼ −
BX

2D
T−3/2. (58)

As in Regime I, the particle tends to its equilibrium position at the node X(0)(0) = 0 of

the standing wave. The differences are that the process is not monotonic, with the particle

oscillating around the node, and is much slower than in Regime I, with a T−3/2 decay of the

distance to the node rather than the exponential decay of Regime I. This is illustrated in

Figure 2.
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FIG. 2. Particle position X(0) as a function of T for a standing wave in the Basset limit of Regime

II obtained by solving (56) analytically (solid line, see Appendix A) and numerically (dashed line).

The long-time asymptotics is confirmed in the log-log coordinate inset which displays R, the ratio

of the exact solution to (58). The parameters are chosen as M = 1, B = 1, K = 1 and D = 1.

D. An exceptional case: plane travelling wave

Plane travelling waves are an important exception to the generic scaling of Regime II

because, for small viscosity, the acoustic pressure they exert turns out to be much smaller

than the O(ϵ2) assumed so far. Specifically, it is smaller by a factor O(δ/a) = O(ϵα) when

δ/a ≫ (ka)3, an assumption we make here (see Eq. (6.13) in Ref. 26). The dominant-balance

argument of section IIC needs to be revisited for this case. It is easily checked that, with

an acoustic pressure of relative order ϵ2+α rather than ϵ2, the balance between acceleration,

drag and acoustic pressure that characterises Regime II is obtained for α = 2/3 and β = 4/3.

As a result, the mean flow v̄ is of order O(ϵ4/3c), asymptotically smaller than the O(ϵc) wave

velocity v′. The wave-mean flow interaction is much weaker than in the generic case above:

because the drag exerted by the mean flow on the sphere is negligible, there is no need to

solve the full Navier-Stokes equations, and dynamics of the sphere is governed by the simple

equation

MẌ
(0)

+ 6πηaẊ
(0)

= F t
ap. (59)
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Regime Parameter range α

Large-viscosity regime δ/a ≫ 1 α < 0

Regime I δ/a = O(1) α = 0

Transition regime ϵ1/2 ≪ δ/a ≪ 1 0 < α < 1/2

Regime II δ/a = O(ϵ1/2) α = 1/2

Inviscid regime δ/a ≪ ϵ1/2 α > 1/2

TABLE I. The asymptotic regimes considered in this paper are characterised by relations between

δ/a and ϵ ≪ 1 or, equivalently, by α such that δ/a = ϵα.

The explicit form of F t
ap, where the superscript t highlights the applicability to plane trav-

elling waves only, can be found in Ref. 26 as Eq. (6.13).

V. INTERMEDIATE REGIMES

Regimes I and II are distinguished regimes characterised by specific scaling relations

between the parameters δ/a and ϵ. We now briefly consider intermediate regimes which

can be regarded as sublimits of Regimes I and II; these apply over broad regions of the

(δ/a, ϵ) space and yield much simplified governing equations. These intermediate regimes are

listed in Table I together with the asymptotic inequalities that define them. A particularly

important regime from the theoretical viewpoint is defined by ϵ1/2 ≪ δ/a ≪ 1 which marks

the transition between Regimes I and II. By showing that the mean equation in this transition

regime is the limit of those in both Regime I and Regime II, we confirm that our heuristic

arguments in section 2 identify all possible distinguished regimes.

A. Large-viscosity regime

This regime corresponds to a large viscosity and is deduced from Regime I by letting

η → ∞. It can be shown that the coefficients En in the acoustic pressure (21) remain

bounded in this limit so F ap is negligible. This motivated our separation between 6πηṽ and

F ap in (21). Physically, these terms describe two very different effects. The first is a linear

(Stokes) drag controlled by the moving boundary; the second is controlled by the average
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wave momentum flux and pressure which are bounded as η → ∞. As a result, (19) reduces

to

Ẋ
(0)

= ṽ. (60)

This simple balance is important for practical purpose since it allows for the possibility of

particles following fluid elements as is required when using tracer particles; we this discuss

this point further in sectionVD.

B. Transition regime

We now show that the Regimes I and II overlap: specifically, the small-viscosity limit of

Regime I matches the large-viscosity limit of Regime II in a transition regime where both

streaming velocity and particle acceleration are negligible.

Starting from Regime I, we let η → 0 in (19): the acoustic pressure then reduces to its

inviscid form, while the viscous drag term ηṽ becomes negligible, leading to the balance

6πηaẊ
(0)

= F inv. (61)

Conversely, letting η̂ → ∞ in the mean momentum equation of Regime II, (50), reduces

this to the Stokes equation

0 = −∇p̃(2) + η̂∇2v̄(1), (62)

Since ∇ · v̄(1) = 0, v̄(1) is a Stokes flow around the spherical particle and the associated

stress (first two terms on the right-hand side of (52)) is the familiar linear Stokes drag.

Since, furthermore, the particle’s acceleration is negligible, (61) is recovered.

C. Inviscid regime

We now consider the limit where viscosity is so small as to be negligible in both the

acoustic pressure and flow equation. Letting η̂ → 0 in (50) yields the Euler equation

ρ(0)
∂v̄(1)

∂T
+ ρ(0)v̄(1) ·∇v̄(1) = −∇p̃(2). (63)

Assuming a potential mean flow v̄(1) = ∇φ̄(1), the pressure is expressed as

p̃(2) = ρ(0)
∂φ̄(1)

∂T
+ ρ(0)

|∇φ̄(1)|2

2
. (64)
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The force on the particle associated with this pressure (first term on the right-hand side of

(52)) is the well-known added-mass effect (e.g. Ref. 30). This reduces (52) to

(M +M ′)Ẍ
(0)

= F inv, (65)

where the added mass M ′ = 2πa3ρ(0)/3. This provides a consistent derivation of the added-

mass effect incorporated by King 19 in an ad hoc manner.

D. When do spherical particles follow fluid elements?

Rigid spherical particles are often used in experiments as passive tracers to visualise and

quantify fluid motion. It is therefore important to find conditions that ensure the spherical

particles follow closely the motion of the fluid elements they are meant to trace, without

being disturbed by the scattering induced by the rigid particle itself. In the presence of

acoustic waves, fluid elements move (on average) with the Lagrangian mean velocity, so the

conditions should ensure that Ẋ
(0)

=
〈

v
(2)
i + ξ

(1)
i ·∇v

(1)
i

〉

up to negligible errors. Here ξ
(1)
i

is the displacement of fluid elements associated with the incident wave only. We now show

that sufficient conditions for this are that

δ/a ≫ 1, |ka| ≪ 1 and λ = 1. (66)

The first condition places the dynamics in the large-viscosity regime discussed in section

VA in which the acoustic pressure is negligible so that Ẋ
(0)

= ṽ. The second condition

ensures that the average over the sphere in (20) is a good approximation to the value of

the integrand at the centre of the sphere. It remains to show that X(1)
r ∂rv(1) ≈ ξ(1)ir ∂rv

(1)
i

to ensure that the second term in (20) approximates the Stokes drift associated with the

incident wave.

To show this, we consider the leading-order particle velocity

u =
λA1ex

ka
[j1(ka) + α1h1(ka) + 2β1h1((1 + i)δ/a)] e−iωt, (67)

with coefficients α1 and β1 given explicitly by Doinikov 25 . It can be checked that λ = 1 leads

to β1 = 0 and, using the asymptotics of spherical Bessel functions34, that |ka| ≪ 1 leads to

α1 = o(|ka|). Therefore the velocity of the sphere reduces to u = A1exe−iωt + o(|ka|A1). To

leading order, this coincides with the radial velocity of the incident wave: indeed, for |ka| ≪ 1
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thisvelocity is dominated by the mode n = 1 in the expansion (11) while the scattered

wave is negligible, again because α1 = o(|ka|) and β1 = 0. It follows that X(1)
r = ξir.

Similarly, the wave velocity around the sphere is dominated by the incident component,

hence ∂rv(1) = ∂rv
(1)
i .

VI. DISCUSSION

In this paper, we examine the dynamics of a spherical particle in an axisymmetric acous-

tic field and derive simplified models governing the mean motion of the particle. This is

controlled by the complex interaction of the particle with both the wave and the surround-

ing fluid. Specifically, four physical effects come into play: inertia (of the particle and of

the fluid it entrains), viscous drag, acoustic streaming, and acoustic pressure. Under the

assumption ka = O(1), or more accurately ka = O(ϵγ) for γ ≥ 0, of a particle that is of

the same order as or smaller than the acoustic wavelength, our analysis shows that these

four effects are never concurrent. Depending on the strength of viscosity (measured by the

parameter δ/a) relative to the wave amplitude, several regimes, characterised by the balance

between two or three of these effects, are possible. These are listed in Table I and we briefly

summarise their main features below.

Fixing the radius of the particle, the relevant regime is determined by the value of viscos-

ity. For large viscosity, the particle is driven by a viscous response to the streaming velocity,

with negligible acoustic pressure and inertia, leading to (60). As viscosity decreases, the drag

effect decreases and acoustic pressure becomes significant, leading to the three-term balance

between drag, streaming and acoustic pressure of Regime I and the more complex model (19)

for δ/a = O(1). For smaller viscosity still, the streaming effect becomes negligible so that

viscous drag balances acoustic pressure, yielding Eq. (61). Importantly, in this ‘transition

regime’ viscosity is weak enough for the acoustic pressure to be well approximated by its

inviscid form. When viscosity is such that δ/a = O(ϵ1/2), particle inertia comes into play.

This is Regime II, where inertia, fluid stress (associated with both pressure and viscosity)

and (inviscid) acoustic pressure balance. This is a rather complex regime in which the mean

dynamics of the particle and of the fluid are fully coupled and the Navier–Stokes equations

need to be solved to determine the fluid stress acting on the particle. The mean equations of

motion are then (50)–(54). Finally, for very weak viscosity, the fluid motion is governed by
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the Euler equation and, under the assumption of a potential flow, its impact reduces to the

familiar added-mass effect, leading to (65). Regimes I and II are of particular importance

because they correspond to distinguished, three-term balances, and encompass the other

regimes as specific sublimits.

It is interesting to note that various acoustic microfluidic experiments span a range of

parameters and hence a range of regimes. We have estimated the parameters used in several

experiments that employ particles for a variety of purposes in order to assess which dynamical

regime is relevant to each. The experiments of Frommelt et al. 1 use spherical particles

to trace the mixing flow generated by time-dependent acoustic streaming. The key non-

dimensional parameters are approximately δ/a ≈ 0.13 and ϵ1/2 ≈ 0.03. This places these

experiments in the transition regime and indicates that acoustic pressure could affect the

particle and cause their trajectories to depart from those of fluid elements. However, for

these experiments, the streaming velocity is substantially larger than our estimate, O(ϵ2)

non-dimensionally or v′2/c dimensionally: as discussed in Ref. 32 (for kδ ≪ 1) in problems

where the wave amplitudes vary over an outer scale ℓ that differs from k (e.g., for weakly

damped travelling wave), the streaming velocity is O((kℓ)2ϵ2). In such cases, the viscous drag

can dominate the acoustic pressure even though δ/a is not large. In the particle collection

experiments of Li, Friend, and Yeo 5 , Oberti et al. 6 and Tan, Yeo, and Friend 41 , the values

of δ/a are O(1) (1.28, 0.19–0.33 and 0.52–0.64, respectively), placing the experiments in

Regime I. Interestingly, Li, Friend, and Yeo 5 observe concentration times proportional to

a−2, consistent with (25). In another set of particle collection experiments, Rogers, Friend,

and Yeo 7 use a broader range of particle diameter, such that δ/a ∈ [0.017, 0.9]. Estimating

their wave amplitudes be in the range ϵ ∈ [9.5 × 10−5, 2.9 × 10−4], we conclude that the

experiments span both Regimes I and II.

While this paper concentrates on spherical particles that are of the same order as or

smaller than the wavelength, we can sketch how the analysis could be extended to larger

particles, with ka = O(ϵγ) for γ < 0. The main difference for the balance of terms in the

equation governing the particle motion is the order of magnitude of the acoustic pressure.

Recall that in the heuristic model (9), this was taken to be O(ϵ2), corresponding to the

dimensional estimate ka3v′2 and to the assumption that the length scale for the change of

momentum flux over the sphere is proportional to k−1. For γ < 0, this scale is instead

controlled by the size of the particle itself, leading to the estimates a2v′2 and ϵ2−γ for the
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dimensional and non-dimensional acoustic pressure. Revisiting the arguments of section IIC

about the balance of terms in (9) with this new estimate for the acoustic pressure gives

the following. A distinguished regime involving all the four terms in (9) is possible and

corresponds to α = 1, β = 2 and γ = −2. This is the most general regime from which

sublimits can be deduced. In particular, for γ = −2α and β = 2, the dominant balance

is between viscous drag, streaming and acoustic pressure, and our Regime I is recovered.

Similarly, for γ = −2α, the balance is between the particle inertia, viscous drag and radiation

pressure, analogous to our Regime II. Detailed calculations would however necessary to

evaluate the acoustic pressure and assess whether the models we derive for γ ≥ 0 remain

unchanged for γ < 0.

Other extensions of the present work could include the effects of particle compressibility,

heat conduction (both of which have already been accounted for in calculations of acoustic

pressure18,23,27–29,42) and slip boundary conditions43. The impact of an outer scale ℓ of

variation of the wave amplitude that differs substantially from the wavelength is relevant

to many applications and also deserves consideration. The parameter kℓ measuring this

scale discrepancy would need to be included in an extension of the heuristic model (9) used

to assess possible distinguished regimes. Depending on its size relative to ϵ, new regimes,

including a regime involving a four-term balance, will appear. We leave the analysis of these

regimes for future work.
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Appendix A: Solution of the Basset equation (56)

Applying the Laplace transform to (56) gives

M
(

s2F (s)− sX(0)(0)− Ẋ(0)(0)
)

=−DF (s)−K
(

sF (s)−X(0)(0)
)

− B
(

s2F (s)− sX(0)(0)− Ẋ(0)(0)
)√

πs−1/2,
(A1)

where F (s) = L{X(0)} is the Laplace transform of X(0). We choose X(0)(0) = X and

Ẋ(0)(0) = 0, so that

F (s) = X
Ms +

√
πBs1/2 +K

Ms2 +
√
πBs3/2 +Ks+D

. (A2)
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FIG. 3. Contour for the inverse Laplace transform in (A3). The countour encloses two poles

denoted by 1 and 2, and two sides of the branch cut (−∞, 0] associated with s1/2.

This function has four poles and a (principal) branch cut associated with s1/2. For defi-

niteness, we consider the parameters M = B = K = D = 1, for which the poles satisfy

s1/2 = −1.19496 ± i0.734487 and 0.308729 ± i0.642634. The second equation leads to two

poles, s1 and s2 say, with argument in (−π, π) consistent with the choice of branch cut; the

first equation leads to poles on the other Riemann sheet that are irrelevant.

The particle position X(0) is then obtained by inverting the Laplace transform using the

contour shown in Figure 3. This yields

1

2πi

⎛

⎝

∫

l

+

∫

R

+

∫

r

+

∫

L1

+

∫

L2

⎞

⎠F (s)est ds = Res1,2{F (s)est}, (A3)

where Res1,2 denotes the sum of the residues at s1 and s2. Taking the limits R → ∞ and

r → 0,

(

∫

R

+
∫

r

)

F (s)est ds = 0, leading to

X(0) =
1

2πi

∫

l

F (s)est ds = Res1,2{F (s)est}−
1

2πi

⎛

⎝

∫

L1

+

∫

L2

⎞

⎠F (s)est ds. (A4)

In (A4) Res1,2{F (s)est} corresponds to two modes of damped oscillations. The remaining

term gives a continuous spectrum contribution associated with the branch cut; it can be
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expressed as

X(0)
cont =

−1

2πi

⎛

⎝

∫

L1

+

∫

L2

⎞

⎠F (s)est ds =
−1

2πi

∞
∫

0

(f(y)− f(y)∗) dy, (A5)

where

f(y) =
−My + i

√
πBy1/2 +K

My2 − i
√
πBy3/2 −Ky +D

e−yt. (A6)
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